New pages

From OpenWetWare
Jump to navigationJump to search
New pages
Hide registered users | Hide bots | Show redirects
  • 12:42, 26 July 2024UA Biophysics: Analytical Balance Instructions ESP (hist | edit) ‎[1,106 bytes]Elizabeth Suesca (talk | contribs) (Created page with "'''Si no tiene autorización para usarlo por favor comunicarse con biofisica@uniandes.edu.co''' '''Al momento de usar este equipo verifique el estado en que lo encuentra. Si el equipo no está en condiciones óptimas debe reportarlo y abstenerse de usarlo. ''' <h2>Uso de la balanza</h2> #La balanza solo debe ser usada para pesar materiales solidos o líquidos en recientes bien cerrados. #Esta balanza no se usará para pesar medios de cultivo celular. #El peso (materi...")
  • 09:28, 26 July 2024UA Biophysics:Protocols:YPD ESP (hist | edit) ‎[476 bytes]Elizabeth Suesca (talk | contribs) (Created page with "'''YPD 1L''' ''' Materiales:''' *10 G de extracto de levadura *20 G de peptona *Si hace placas, agregue 20 g de agar *Solución de glucosa filtrada al 40% p/v (20g en 50 ml de agua destilada, caliente para diluir). '''Protocolo:''' *Mezcle los ingredientes secos y agregue agua destilada hasta 950 ml *Autoclavar *Añadir los 50 ml de la solución de glucosa para obtener una concentración final de 2% (p/v). Return to Protocols<br>")
  • 09:20, 26 July 2024UA Biophysics:Protocols:YPD 1L (hist | edit) ‎[486 bytes]Elizabeth Suesca (talk | contribs) (Created page with " <br> YPD_ESP<br> Return to Protocols<br>")
  • 08:34, 26 July 2024UA Biophysics:Protocols:Glass Cleaning ESP (hist | edit) ‎[1,259 bytes]Elizabeth Suesca (talk | contribs) (Created page with "Limpieza laminillas con Solución piraña '''Materiales:''' • Ácido sulfúrico H2SO4 • Peróxido H2O2 al 50% • Isopropanol '''Procedimiento:''' '''Día 1:''' En cabina de extracción con guantes de nitrilo de alto calibre: *En un vaso de 25 ml de vidrio preparar 20 ml de Solución H2SO4: H2O2 al 30% agregando el peróxido al agua (8 ml de agua y 12 ml de peróxido). *En vaso de 250 ml colocar 60 ml de Ácido sulfúrico *Se le agregan los 20 ml del peróxido m...")
  • 08:28, 26 July 2024UA Biophysics:Protocols: Glass Cleaning (hist | edit) ‎[1,271 bytes]Elizabeth Suesca (talk | contribs) (Created page with "== Materials == == Protocol == *The samples are dissolve in a mixture of chloroform/methanol/water (3:6:1 v/v):<br> Add chloroform, vortex 5 minutes<br> Add methanol vortex 5 minutes<br> Add water vortex 1 minute<br> and then vortexed every 15min for 4h(solution have to be homogeneous<br> *The samples are then allowed to stand for 2 days to separate the three phases, after which the lower phase of chloroform and lipid is drawn off by aspiration and collected in a clean...")
  • 11:59, 20 June 2024Karas Lab:FREEZ Module (hist | edit) ‎[519 bytes]Aclesage (talk | contribs) (Created page with "{{Karas_Lab}} <div style="padding: 8px; color: #000000; background-color: #ffffff; width: 900px; border: 2px solid #666666;"> =Fragility Processing Pipeline= ==Preface== First things first: if you don't have RAVE installed, follow these steps to do so: RAVE:Install Next, you'll have to pre-process your patient for RAVE. Tutorials for that are available here: RAVE:ravetutorials ==Pre-Processing the Patient for Fragility==")
  • 12:45, 14 June 2024UA Biophysics:Peptides and IA (hist | edit) ‎[1,837 bytes]Elizabeth Suesca (talk | contribs) (Created page with "Debido a la rápida aparición de mecanismos de resistencia a antibióticos en diferentes microorganismos patógenos potencialmente mortales a nivel mundial, existe un gran interés en la identificación de agentes antimicrobianos alternativos que puedan ayudar en el desarrollo de nuevas estrategias de tratamiento. Mediante la aplicación de una rutina de Deep Learning, desarrollada y publicada por el grupo de investigación proponente, se predecirá una lista de candida...")
  • 13:08, 12 June 2024Karas Lab:YAEL Electrode Localization (hist | edit) ‎[859 bytes]Aclesage (talk | contribs) (Created page with "<b>Y</b>our <b>A</b>dvanced <b>E</b>lectrode <b>L</b>ocalizer (YAEL) is free and open-source software for localizing and visualizing electrodes. YAEL is a sister package to the RAVE software toolbox for the analysis of intracranial electroencephalogram (iEEG) data.")
  • 19:16, 11 June 2024BioMicroCenter:PricingFY2025 (hist | edit) ‎[28,119 bytes]Stuart S. Levine (talk | contribs) (Created page with "''' PRICING UPDATE 7/1/2024 ''' == SEQUENCING == Please note that samples submitted from '''CORE LAB'''s will be given priority on all equipment. The BioMicro Center reserves the right to reject samples for any reason. <BR><BR> === NOVASEQ SEQUENCING === {| class="wikitable" border=1 ! NOVASEQ SEQUENCING !width=80| CORE LAB !width=80| MIT !width=80| Non-MIT !width=80| uni...")
  • 12:14, 4 June 2024Production and Degradation Rate Papers (hist | edit) ‎[8,903 bytes]Nikkichun (talk | contribs) (Created page with "After reviewing the data from this past year, it was found that production rates hold great significance in estimating GRNs. Trials with the initial toy network where P's were held constant gave much more accurate results than those where B's were held constant or no variables were held constant. Currently, these rates are based on the 2014 Neymotin et al. paper, but since this paper is now 7 years old, we wanted to investigate if there were more updated methods for calc...")
  • 12:05, 4 June 2024Nikki Chun - Summer 2024 (hist | edit) ‎[42 bytes]Nikkichun (talk | contribs) (Created page with "Production and Degradation Rate Papers")
  • 23:12, 7 May 2024Altman:WUbites (hist | edit) ‎[2,841 bytes]David Altman (talk | contribs) (Created page with "{{Template:Altman}} <div style="padding: 10px; width: 700px; border: 5px solid #B22222;"> =<center>'''WUbites'''</center>= <br> This project is inspired by astrobites, whose goal is to present astrophysical papers in a brief format that is accessible to undergraduate students in the physical sciences. As part of Phys 390W, Science Communication in Physics (SCiP), Willamette Physics Majors sought to translate research articles from a variety of different topics in ph...")
  • 08:16, 3 May 2024BioMicroCenter:Oligo Synthesis (hist | edit) ‎[4,408 bytes]Noelani Kamelamela (talk | contribs) (Created page with "{{BioMicroCenter}} ''' ** All users must be trained before being allowed to use the equipment **'''<BR><BR> The BioMicro Center currently hosts two oligo synthesizers: one Dr Oligo 96 (Biolytic) and one Syntax STX-200 (DNAScript). <br><br> Dr Oligo is optimized for higher concentrations of oligos made through polyamidite synthesis. For ready to use oligos a series of steps must be completed using the other related machines in the Center including the column presser, the...")
  • 08:19, 2 May 2024UA Biophysics:Protocols:Buffer HEPES (hist | edit) ‎[689 bytes]Elizabeth Suesca (talk | contribs) (Created page with "'''Buffer HEPES: 500 mL, pH 7.4 ''' '''Este buffer no puede ser usado para trabajar con Calceina, en ese caso es obligatorio usar un buffer de elución.''' ==Materiales== * HEPES 2,383 g * NaCl 3,1896 g * NaOH 1 M * HCl 1 M ==Procedimiento== # Colocar 400 ml de agua deionizada en la botella con agitador. # Diluir el HEPES y el NaCl # Ajustar pH a 7.4 usando NaOH y/o HCl. # Sacar el agitador y completar los 500 mL con agua deionizada {| class="wikitable" style="...")
  • 07:53, 2 May 2024UA Biophysics:Protocols:Elution Buffer8 mOsM ESP (hist | edit) ‎[1,010 bytes]Elizabeth Suesca (talk | contribs) (Created page with " ==Materiales== * HEPES 9.532 g * NaCl * NaOH 1 M 30 ml * HCl 1 M ==Procedimiento== # Colocar 1.8 litros de agua deionizada en la botella con un agitador. # Diluir el HEPES (concentracion final de 20 mM) y el NaCl (concnetracion final de 170 mM). # Ajustar pH a 7.4 usando NaOH y/o HCl (Generalmente se inicia con pH de 5.4) # Determinar la concentración de HCl y NaOH. Por ejemplo, si entre los dos se agregaron 16 ml a 1M, entonces para un buffer de 2 L la concentrac...")
  • 18:52, 1 May 2024Microfluidic Vasculature for Cell Culture - Lilin Zhao, Melissa Deschamps, Marissa Burgess, Matthew Tiller, Jacob Kellett, Tina Leong, Katelyn Mullen, Daniel Bell, Anna Comperchio, Evelyn Moore (hist | edit) ‎[14,909 bytes]Ejmoore (talk | contribs) (Created page with "{{Template:CHEM-ENG590E}} ==Introduction== It is extremely important to create ''in vitro'' models of vasculature in order to study cancer (including metastasis and tumor cell circulation), drug delivery, diseases, and to supply oxygen and remove waste to systems too large to depend on diffusion. Vascular diseases are the leading cause of death worldwide causing around 17 million deaths per year. There are limited treatments, and therefore a dire need to better understa...")
  • 08:30, 29 April 2024UA Biophysics:Protocols:Calcein8 ESP (hist | edit) ‎[1,776 bytes]Elizabeth Suesca (talk | contribs) (Created page with "'''Calceina: 800 mOsM, 50 mM, 50 ml, pH 7.4 ''' ==Materiales: == * Probeta 100 ml * 30 ml de NaOH (1M) * HCl (1M) * NaCl * 1.5564 g de calceina * 40 ml Buffer H: ** 5 ml de EDTA 0.2 mM (Para que quede a 0.01 mM en la solución final) ** HEPES 238.3 mg (para que quede a 10 mM en la solución final). ==Procedimiento: == # En la probeta medir 10 ml de NaOH 1M y colocar agitador # Disolver en el NaOH 1.5564 g de calceina (50 mM o 50 mOsM) # Agregar 200 mM de NaCl (...")
  • 12:58, 28 April 2024Organ/Tumor/Body-on-a-Chip (hist | edit) ‎[53,034 bytes]Michele Caggioni (talk | contribs) (Created page with "{{Template:CHEM-ENG590E}} =Introduction= Body-on-a-chip, [https://openwetware.org/wiki/Organ-on-a-chip_-_Dan_Nguyen Organ-on-a-chip.png], and Tumor-on-a-chip all represent a consolidation of microfluidic technologies and biological practices in efforts to model body processes on a higher level of detail and complexity. Through the development of Lab-on-a-chip devices, these microfluidic devices have opened a door that could allow for more human-specific research to occu...") originally created as "Organ/Tumor/Body-on-a-Chip - Organ on a Chip - Michele Caggioni"