Dionne: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
(10 intermediate revisions by the same user not shown)
Line 4: Line 4:
==Welcome to the Dionne lab!==
==Welcome to the Dionne lab!==


We are interested in (1) the effects of host genetics on the biology of infection; and (2) the physiological control of metabolic balance.
That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.
 
We are interested in (1) the effects of host genetics on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. ''Drosophila melanogaster'' is our animal model of choice.
 
Work in the lab is funded by [http://www.bbsrc.ac.uk the Biotechnology and Biological Sciences Research Council] and [http://www.wellcome.ac.uk the Wellcome Trust].
 
==We've moved!==
 
The lab has moved from its original digs (on the 27th and 28th floors of Guy's Tower) across the street to New Hunt's House in order to be part of the new Centre for the Molecular and Cellular Biology of Inflammation. Our academic affiliation will be changing to the Peter Gorer Department of Immunobiology, DIIID, School of Medicine. Directions and postal addresses have been corrected on the [http://dionne.openwetware.org/Contact.html Contact] page.


==Host genetics and the biology of infection==
==Host genetics and the biology of infection==
Line 14: Line 22:
So far, our work on this system has focused on the mechanisms of pathogenesis. We have found that this infection causes progressive loss of metabolic stores, similar to the wasting seen in people with tuberculosis. We have shown that, in the fly, this wasting effect is caused partly by systemic failures in anabolic signals via the insulin effector kinase Akt. We are now working to try to understand how infection causes this defect in anabolic signalling. We also have mutants that affect other aspects of disease; we are working with these mutants to understand  other aspects of disease pathogenesis as well as how the fly immune system fights Mycobacterial infections.
So far, our work on this system has focused on the mechanisms of pathogenesis. We have found that this infection causes progressive loss of metabolic stores, similar to the wasting seen in people with tuberculosis. We have shown that, in the fly, this wasting effect is caused partly by systemic failures in anabolic signals via the insulin effector kinase Akt. We are now working to try to understand how infection causes this defect in anabolic signalling. We also have mutants that affect other aspects of disease; we are working with these mutants to understand  other aspects of disease pathogenesis as well as how the fly immune system fights Mycobacterial infections.


==Physiological control of metabolic balance==
==Cytokines and cytokine signalling==


As mentioned above, we've found that infection with ''M marinum'' causes serious metabolic defects in ''Drosophila''. At least some of these effects are due to changes in signalling pathways whose roles in metabolic control are largely unexplored or completely unknown. This has led us to examine the roles of these pathways in metabolic control in healthy animals so that we can then understand the effects of infection-induced perturbation of these pathways.
In the course of screening, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. One aspect of this is the metabolic effects of infection, which appear to result from high levels of cytokine expression over several days. Cytokines also regulate the realized immune response of the fly, much as they do in mammals.


This work is preliminary but is very exciting - we hope to be able to say more soon!
We've recently published some of this work in "Current Biology", showing that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. [http://www.ncbi.nlm.nih.gov/pubmed/21962711 Check it out!]


<wikionly>
<wikionly>
Line 24: Line 32:
<!--The line below includes a list of recent changes to your lab wiki on your homepage.  If you've named your pages in the form <LabName>:Page name.  Then you should just be able to replace the LabName below with your course's number and it should work.-->
<!--The line below includes a list of recent changes to your lab wiki on your homepage.  If you've named your pages in the form <LabName>:Page name.  Then you should just be able to replace the LabName below with your course's number and it should work.-->
{{Special:Recentchanges/Dionne&limit=50}} </wikionly>
{{Special:Recentchanges/Dionne&limit=50}} </wikionly>
 
<nonwikionly>
</div>
This page was created using [http://www.openwetware.org Open Wetware].</nonwikionly>

Revision as of 12:27, 12 November 2011

About Us       Protocols &c.       Lab Members       Publications       Contact       Links


Welcome to the Dionne lab!

That is to say, Marc Dionne's lab, at King's College London; not to be confused with any other Dionne lab.

We are interested in (1) the effects of host genetics on the biology of infection; and (2) cytokine signalling and its effects on immune and non-immune tissues. Drosophila melanogaster is our animal model of choice.

Work in the lab is funded by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust.

We've moved!

The lab has moved from its original digs (on the 27th and 28th floors of Guy's Tower) across the street to New Hunt's House in order to be part of the new Centre for the Molecular and Cellular Biology of Inflammation. Our academic affiliation will be changing to the Peter Gorer Department of Immunobiology, DIIID, School of Medicine. Directions and postal addresses have been corrected on the Contact page.

Host genetics and the biology of infection

Different individuals show different levels of resistance to infections and develop different pathologies in response to infections. We are interested in why this is the case. We use the fruitfly Drosophila melanogaster as a model host to study these questions; this allows us to screen for genes that affect the progress of infection in a rapid and unbiased fashion.

All of our experiments originate from a simple genetic screen. Mutant flies are infected with Mycobacterium marinum, a bacterium closely-related to the causative agent of tuberculosis, or with Mycobacterium smegmatis, a related non-pathogen. We select lines of flies that die more quickly or more slowly than wild-type controls and identify the mutation that gives rise to this phenotype. We then try to understand what this phenotype tells us about the function of the mutated gene.

So far, our work on this system has focused on the mechanisms of pathogenesis. We have found that this infection causes progressive loss of metabolic stores, similar to the wasting seen in people with tuberculosis. We have shown that, in the fly, this wasting effect is caused partly by systemic failures in anabolic signals via the insulin effector kinase Akt. We are now working to try to understand how infection causes this defect in anabolic signalling. We also have mutants that affect other aspects of disease; we are working with these mutants to understand other aspects of disease pathogenesis as well as how the fly immune system fights Mycobacterial infections.

Cytokines and cytokine signalling

In the course of screening, we find a lot of molecules and pathways that end up being involved in cytokine signalling and its consequences. One aspect of this is the metabolic effects of infection, which appear to result from high levels of cytokine expression over several days. Cytokines also regulate the realized immune response of the fly, much as they do in mammals.

We've recently published some of this work in "Current Biology", showing that two different TGF-betas regulate fly immunity, each inhibiting a specific arm of the immune response, and each being produced by only a subset of phagocytes. Check it out!

<wikionly>

Recent updates to the lab wiki

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

6 May 2024

     12:59  BioMicroCenter:Covaris‎‎ 11 changes history +450 [Noelani Kamelamela‎ (11×)]
     
12:59 (cur | prev) −17 Noelani Kamelamela talk contribs (→‎R230)
     
12:58 (cur | prev) −1 Noelani Kamelamela talk contribs (→‎R230)
     
12:57 (cur | prev) +1 Noelani Kamelamela talk contribs (→‎R230)
     
12:57 (cur | prev) +6 Noelani Kamelamela talk contribs (→‎R230)
     
12:56 (cur | prev) +2 Noelani Kamelamela talk contribs (→‎R230)
     
12:55 (cur | prev) +6 Noelani Kamelamela talk contribs (→‎R230)
     
12:54 (cur | prev) −1 Noelani Kamelamela talk contribs (→‎R230)
     
12:54 (cur | prev) +64 Noelani Kamelamela talk contribs (→‎R230)
     
12:49 (cur | prev) +49 Noelani Kamelamela talk contribs (→‎R230)
     
12:22 (cur | prev) +221 Noelani Kamelamela talk contribs (→‎R230)
     
11:55 (cur | prev) +120 Noelani Kamelamela talk contribs (→‎R230)
     11:41  Paper Microfluidic Device for Archiving Breast Epithelial Cells diffhist −89 Xning098 talk contribs (→‎Paper Microfluidics)

5 May 2024

     21:57  Paper Microfluidic Device for Archiving Breast Epithelial Cells‎‎ 35 changes history +1,810 [Xning098‎ (35×)]
     
21:57 (cur | prev) −1 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:57 (cur | prev) +351 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:56 (cur | prev) −351 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:56 (cur | prev) 0 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:56 (cur | prev) 0 Xning098 talk contribs (→‎Device Design)
     
21:56 (cur | prev) +10 Xning098 talk contribs (→‎Absorbent Breast Pad for DNA Storage)
     
21:54 (cur | prev) −43 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:54 (cur | prev) −1 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:52 (cur | prev) +64 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:51 (cur | prev) +152 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:50 (cur | prev) +89 Xning098 talk contribs (→‎Results with Breast Epithelial Cells)
     
21:49 (cur | prev) +558 Xning098 talk contribs (→‎References)
     
21:43 (cur | prev) +21 Xning098 talk contribs (→‎Results with Breast Epithelial Cells)
     
21:41 (cur | prev) +4 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:41 (cur | prev) +10 Xning098 talk contribs (→‎Absorbent Breast Pad for DNA Storage)
     
21:41 (cur | prev) +10 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:40 (cur | prev) 0 Xning098 talk contribs (→‎Guthrie Cards)
     
21:39 (cur | prev) +21 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:38 (cur | prev) +10 Xning098 talk contribs (→‎Results with Breast Epithelial Cells)
     
21:38 (cur | prev) +321 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:37 (cur | prev) −287 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:37 (cur | prev) −1 Xning098 talk contribs (→‎Diseases tested with neonatal heel pricks)
     
21:36 (cur | prev) 0 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:36 (cur | prev) +1 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:35 (cur | prev) +1 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:34 (cur | prev) +4 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:32 (cur | prev) +281 Xning098 talk contribs (→‎PCR/Methylation Detection Strategy)
     
21:24 (cur | prev) −8 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:24 (cur | prev) −1 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:23 (cur | prev) +207 Xning098 talk contribs (→‎Whatman FTA Cards)
     
21:18 (cur | prev) +394 Xning098 talk contribs (→‎Results with Breast Epithelial Cells)
     
19:54 (cur | prev) +48 Xning098 talk contribs (→‎Potential of Paper Microfluidic Device for DNA Storage)
     
19:50 (cur | prev) +102 Xning098 talk contribs (→‎Potential of Paper Microfluidic Device for DNA Storage)
     
19:41 (cur | prev) +24 Xning098 talk contribs (→‎Breast Cancer: Overview)
     
19:31 (cur | prev) −180 Xning098 talk contribs (→‎Possibilities in Breast Cancer Detection)
     21:12  (Upload log) [Xning098‎ (3×)]
     
21:12 Xning098 talk contribs uploaded File:Whatman® FTA® cards.png
     
21:03 Xning098 talk contribs uploaded File:Diagram-Shows-the-Technique-of-FNAC.png
     
20:18 Xning098 talk contribs uploaded File:Guthrie test .png

</wikionly>

<nonwikionly> This page was created using Open Wetware.</nonwikionly>