User:Nuri Purswani/Network/References

From OpenWetWare
Jump to: navigation, search
  • F. Alche-Buc, M. Quach, N. Brunel. Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological network inference. Vol 23 23:3209-3216 (2007)
  • Bansal et al (2007) How to infer gene networks from expression profiles. Molecular Systems Biology 3:78.
  • Bansal M, Della Gatta G, di Bernardo D (2006) Inference of gene regulatory networks and compound mode of action from time course gene expression profiles. Bioinformatics 22: 815–822.
  • Beal, M.J., Falciani, F., Ghahramani, Z., Rangel C. and Wild, D.L. A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics, 21: 349-356 (2005).
  • Beal M.J., Li, J. Ghahramani Z. and Wild, D.L. Reconstructing Transcriptional Networks using Gene Expression Profiling and Bayesian State Space Models. In Introduction to Systems Biology (Ed: Choi, S.), Humana Press, Totowa (2007), pp 217-241
  • Beal, M.J.,Angus, J., Li, J., Rangel, C., Wild, D.L. Inferring Transcriptional Networks Using Prior Biological Knowledge and Constrained State-Space Models. In Lawrence, N.D., Girolami, M., Rattray, M. and Sanguinetti, G. (Eds.), Learning and Inference in Computational Systems Biology, MIT Press, Cambridge, (2010), pp 117-152.
  • Ben-Gal, Irad (2007). "Bayesian Networks". in Ruggeri, Fabrizio; Kennett, Ron S.; Faltin, Frederick W. Encyclopedia of Statistics in Quality and Reliability. John Wiley & Sons. doi:10.1002/9780470061572.eqr089. ISBN 978-0-470-01861-3. http://www.eng.tau.ac.il/~bengal/BN.pdf.
  • Basu, Gerchman, Collins, Arnold, and Weiss. A synthetic multicellular system for programmed pattern formation Nature. April 21 2005. Vol. 434, 1130-1134.
  • Cantone et al. A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches Cell, Volume 137, Issue 1, 172-181
  • Collins et al (2009). Systems Biology Strikes Gold. Cell 137, Pgs24-25. DOI 10.1016/j.cell.2009.03.032
  • Michael B. Elowitz and Stanislas Leibler; A Synthetic Oscillatory Network of Transcriptional Regulators; Nature. 2000 Jan 20;403(6767):335-8.
  • J. Gonçalves, S. Warnick. Necessary and Sufficient Conditions for Dynamical Structure Reconstruction of LTI Networks. IEE Transactions on Automatic Control, 53:7 (2008).
  • Y. Yuan, G.-B. Stan, Sean Warnick, J. Gonçalves. Minimal dynamical structure realisations with application to network reconstruction from data, Proceedings of the 48th IEEE Conference on Decision and Control (CDC 2009), Shangai, China, 16-18 December, 2009
  • J. Goncalves and S. Warnick. Systems Theoretic Approaches to Network Reconstruction, Control Theory and Systems Biology, MIT Press, Eds. B. Ingalls and P. Iglesias, 2009.
  • J. Goncalves and S. Warnick. Necessary and Sufficient Conditions for Dynamical Structure Reconstruction of LTI Networks, IEEE Transactions on Automatic Control, vol.53 (7), August 2008.
  • J. Gonçalves, G.-B. Stan, S. Warnick. Dynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks, R. Howes, L. Eccleston, Proceedings of the 47th IEEE Conference on Decision and Control (CDC 2008), Cancun, Mexico, 9-11 December, 2008.
  • C. Koh, F.X. Wu, G. Selvaraj, A. Kusalik. Using a State-Space Model and Location Analysis to Infer Time-Delayed Regulatory Networks. EURASIP Journal on Bioinformatics and Systems Biology. Article ID 484601 (2009)
  • A.J. Kusalik,F.X. Wu, W.J. Zhang. Modeling Gene Expression from Microarray Expression Data with State-Space Equations. Pacific Symposium on Biocomputing 9:581-592(2004)
  • A.A. Markov. "Extension of the limit theorems of probability theory to a sum of variables connected in a chain". reprinted in Appendix B of: R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains. John Wiley and Sons, 1971
  • Catharina Olsen, Patrick E. Meyer, and Gianluca Bontempi .On the Impact of Entropy Estimation on Transcriptional Regulatory Network Inference Based on Mutual Information.EURASIP Journal on Bioinformatics and Systems Biology Volume 2009 (2009), Article ID 308959, 9 pages doi:10.1155/2009/308959
  • Porter et. al. Chemotaxis in Rhodobacter sphaeroides Requires an Atypical Histidine Protein Kinase* Received for publication, August 3, 2004, and in revised form, September 20, 2004 Published, JBC Papers in Press, October 12, 2004, DOI 10.1074/jbc.M408855200
  • C.Rangel, J. Angus, Z. Ghahramani, and D. Wild. "Modeling biological responses using gene expression profiling and state space models," Probabilistic Modelling in Medical Informatics and Bioinformatics, D. Husmeier, S. Roberts, and R. Dybowski, editors, Springer Verlag, 2005.
  • C. Rangel, J. Angus, F. Falciani, Z Ghahramani, M. Lioumi, and D. Wild. "Modeling T-cell activation using gene expression profiling and state space models," Bioinformatics. 2004 Jun 12; 20(9):1362-72. Epub 2004 Feb.12.
  • E. Sontag, A. Kiyatkin, B. Kholodenko, ”Inferring dynamic architecture of cellular networks using time series of gene expression, protein and metabolite data,” IEEE Bioinformatics, Vol. 20, Issue 12, pp. 1877- 1886, 2004.
  • E.D. Sontag, M. Andrec, B.N. Kholodenko, R.M. Levy, and. Inference of signaling and gene regulatory networks by steady-state perturbation experiments: structure and accuracy. J. Theoret. Biol., 232(3):427-441, 2005.
  • M. Secrier*, T. Toni*, M.P.H. Stumpf, The ABC of reverse engineering of biological signalling systems, Mol.Biosyst. 5:1925-1935 (2009) (website)
  • Tal Danino, Octavio Mondragón-Palomino, Lev Tsimring, Jeff Hasty. A synchronized quorum of genetic clocks Nature, 426:326-330 (2010)
  • T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M.P.H. Stumpf, Approximate Bayesian Computation scheme for parameter inference and model selection in dynamical systems, J.Roy. Soc. Interface 6, 187-202 (2009).
  • T. Toni, M.P.H. Stumpf, Simulation-based model selection for dynamical systems in systems and population biology, Bioinformatics, 26:104-110 (2010). (website)
  • Fang-Xiang Wu, WJ Zhang, and Anthony J Kusalik. Determination of the minimum number of microarray experiments for discovery of gene expression patterns. BMC Bioinformatics 2006, 7(Suppl 4):S13doi:10.1186/1471-2105-7-S4-S13
  • Zak DE, Gonye GE, Schwaber JS, Doyle FJ, 3rd. Importance of input perturbations and stochastic gene exprsesion in the reverse engineering of genetic regulatory networks: insights from an identifiability analysis of an in silico network. Genome Res (2003);13:2396-2405

Links to useful toolboxes