Biomod/2013/StJohns
<html>
<head>
<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>
</head>
<style>
body {
font-family: 'Trebuchet MS', 'Open Sans', sans-serif; overflow-y: auto;
}
.container {
background-color: #ffffff; margin-top:0px
} .OWWNBcpCurrentDateFilled { display: none; }
h5 {
font-family: 'Trebuchet MS', 'Open Sans', sans-serif; font-size: 11px; font-style: normal; text-align: center; margin:0px; padding:0px;
}
- column-content
{
width: 0px; float: left; margin: 0 0 0 0; padding: 0;
} .firstHeading {
display:none; width:0px;
}
- column-one
{
display:none; width:0px; background-color: #ffffff;
}
- globalWrapper
{
width: 1024px; background-color: #ffffff; margin-left: auto; margin-right: auto
}
- content
{
margin: 0 0 0 0; align: center; padding: 12px 12px 12px 12px; width: 1000px; background-color: #ffffff; border: 0;
}
- bodyContent
{
width: 974px; align: justify; background-color: #fffffff;
}
- column-content
{
width: 1024px; background-color: #ffffff;
}
- footer
{
position: absolute; bottom: 0; width: 1024px;
}
- menu
{
position: fixed; float: left; width: 180px; padding: 10px; background-color: #FFFFFF;
}
- resolutionwarning
{
display: none; text-align: center;
}
- pagecontent
{
text-align: justify; float: right; width: 744px; margin-left: 300px; min-height: 400px
}
- toc { display: none; }
@media all {
body { background: #ffffff 0 0 no-repeat;}
}
/*Expanding list*/ ul { list-style: none; }
- exp li ul { display: none; }
- exp li:hover ul { display: block; }
- exp li a:active ul { display: block; }
a:link {color:#007788;} /*unvisited link*/ a:visited {color:#007788;} /* visited link */ a:hover {color:#00ccff;} /* mouse over link */ a:active {color:#00ccff;} /* selected link */
</style> </html>
DNA-based nanotechnology utilizes the exquisite selectivity of the Watson-Crick base-pair, combined with deep understanding and control of double-helical structure gleaned from physics, molecular biology, chemistry and nanotechnology, to program the self-assembly of nanometer-scale objects.
The goal of this project is the creation of a DNA origami structure that undergoes significant conformational changes when bound to objects ranging in size from 10-100 nm.
Since binding-specific conformational change can be transduced into a signal, this should enable the design of robust sensors for a wide variety of nano-scale objects, such as viruses.
We especially wish to acknowledge
- Matthew Francis, for providing the functionalized MS2 capsids used for these experiments
- Matthew Francis and Hao Yan, whose paper [3] inspired the use of these sticky capsids with origami as a model system for virus binding
- Masayuki Endo, whose design [2] provided the basis for this one
<html><div style="text-align: center; font-weight: bold;>">We are team Toehold Conga Nanny.</div></html>