Abhishek Tiwari:About

From OpenWetWare
Jump to navigationJump to search

Home        About        Resources        Research & Projects        Softwares        Publications        ImpLinks        Contact       


"I have no special talent, I'm only passionately curious" -- Einstein.

"One thing I feel most passionately about: love of invention will never die."-Karl Benz

I am spiritual about Einstein's Philosophy of Science. Learn more about Einstein. [1][2][3]

<html> <a href="http://www.einstein.caltech.edu/"><img src="http://www.einstein.caltech.edu/images/einstein-bg.jpg" alt="einstein" border="0"></a> </html>

Einstein's Philosophy of Science

Concepts that have proven useful in ordering things easily achieve such an authority over us that we forget their earthly origins and accept them as unalterable givens. Thus they come to be stamped as "necessities of thought," "a priori givens," etc. The path of scientific advance is often made impassable for a long time through such errors. For that reason, it is by no means an idle game if we become practiced in analyzing the long commonplace concepts and exhibiting those circumstances upon which their justification and usefulness depend, how they have grown up, individually, out of the givens of experience. By this means, their all-too-great authority will be broken. They will be removed if they cannot be properly legitimated, corrected if their correlation with given things be far too superfluous, replaced by others if a new system can be established that we prefer for whatever reason. (Einstein 1916, 102)

It has often been said, and certainly not without justification, that the man of science is a poor philosopher. Why then should it not be the right thing for the physicist to let the philosopher do the philosophizing? Such might indeed be the right thing at a time when the physicist believes he has at his disposal a rigid system of fundamental concepts and fundamental laws which are so well established that waves of doubt can not reach them; but it can not be right at a time when the very foundations of physics itself have become problematic as they are now. At a time like the present, when experience forces us to seek a newer and more solid foundation, the physicist cannot simply surrender to the philosopher the critical contemplation of the theoretical foundations; for, he himself knows best, and feels more surely where the shoe pinches. In looking for a new foundation, he must try to make clear in his own mind just how far the concepts which he uses are justified, and are necessities. (Einstein 1936, 349)

We have seen how experience led to the introd. of the concept of the quantity of electricity. it was defined by means of the forces that small electrified bodies exert on each other. But now we extend the application of the concept to cases in which this definition cannot be applied directly as soon as we conceive the el. forces as forces exerted on electricity rather than on material particles. We set up a conceptual system the individual parts of which do not correspond directly to empirical facts. Only a certain totality of theoretical material corresponds again to a certain totality of experimental facts.

We find that such an el. continuum is always applicable only for the representation of el. states of affairs in the interior of ponderable bodies. Here too we define the vector of el. field strength as the vector of the mech. force exerted on the unit of pos. electr. quantity inside a body. But the force so defined is no longer directly accessible to exp. It is one part of a theoretical construction that can be correct or false, i.e., consistent or not consistent with experience, only as a whole. (EA 3-007, ECP 3-11, 325)

This equation connects thermodynamics with the molecular theory. It yields, as well, the statistical probabilities of the states of systems for which we are not in a position to construct a molecular-theoretical model. To that extent, Boltzmann's magnificent idea is of significance for theoretical physics . . . because it provides a heuristic principle whose range extends beyond the domain of validity of molecular mechanics. (Einstein 1915, p. 262).

I am supposed to explain to you my doubts? By laying stress on these it will appear that I want to pick holes in you everywhere. But things are not so bad, because I do not feel comfortable and at home in any of the "isms." It always seems to me as though such an ism were strong only so long as it nourishes itself on the weakness of it counter-ism; but if the latter is struck dead, and it is alone on an open field, then it also turns out to be unsteady on its feet. So, away with the squabbling.

"The physical world is real." That is supposed to be the fundamental hypothesis. What does "hypothesis" mean here? For me, a hypothesis is a statement, whose truth must be assumed for the moment, but whose meaning must be raised above all ambiguity. The above statement appears to me, however, to be, in itself, meaningless, as if one said: "The physical world is cock-a-doodle-doo." It appears to me that the "real" is an intrinsically empty, meaningless category (pigeon hole), whose monstrous importance lies only in the fact that I can do certain things in it and not certain others. This division is, to be sure, not an arbitrary one, but instead ….

I concede that the natural sciences concern the "real," but I am still not a realist. (EA 22-307, ECP-8-624)

<html> <a href="http://abhishek-tiwari.com/"><img src="http://abhishek-tiwari.com/favicon.ico" alt="abhishek-tiwari.com" border="0"></a> <a href="http://icodons.com/iCODONS/"><img src="http://icodons.com/iCODONS/favicon.ico" alt="iCODONS.com"0"></a> </html>