IGEM:Harvard/2006/DNA nanostructures

From OpenWetWare
Revision as of 11:40, 7 July 2006 by Matthewmeisel (talk | contribs) (Thrombin-aptamer experiments)
Jump to: navigation, search

Project Overview

  • Our goal is to to design and implement molecular containers, which can be dynamically opened and closed by an external stimulus.
  • The containers will be implemented as DNA nanostructures, which afford a significant degree of positional control and chemical versatility.
  • As an initial proof-of-concept, we plan to use our DNA containers to demonstrate controllable activation ("delivery") of anti-thrombin aptamers.
  • We expect that molecular containers could have several interesting scientific and clinical applications, such as
    • Drug and gene delivery
    • Bio-marker scavenging (early detection of biomarkers)
    • Directed evolution (compartmentalized selections)
    • Using multiplexing for combinatorial chemical synthesis
    • Capture and stabilization of multiprotein complexes
    • Protein folding (chaperones)
    • Cell sorting

Container Specs

IGEM harv06 mattspecs.gif

Container Designs

Latch Designs

IGEM harv06 mattlatch.gif

Coding

Existing code

Thrombin-aptamer experiments

Notes

Buffers

  • Macaya's and Bock's selection buffer: 20 mM Tris-acetate, pH 7.4, 140 mM NaCl / 5 mM KCl / 1 mM CaCl2 / 1 mM MgCl2

Bibliography

  1. Schultze P, Macaya RF, and Feigon J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1994 Feb 4;235(5):1532-47. DOI:10.1006/jmbi.1994.1105 | PubMed ID:8107090 | HubMed [tha1]
  2. Liu Y, Lin C, Li H, and Yan H. Aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed Engl. 2005 Jul 11;44(28):4333-8. DOI:10.1002/anie.200501089 | PubMed ID:15945116 | HubMed [tha2]
  3. Li WX, Kaplan AV, Grant GW, Toole JJ, and Leung LL. A novel nucleotide-based thrombin inhibitor inhibits clot-bound thrombin and reduces arterial platelet thrombus formation. Blood. 1994 Feb 1;83(3):677-82. PubMed ID:8298130 | HubMed [tha3]
  4. Bock LC, Griffin LC, Latham JA, Vermaas EH, and Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature. 1992 Feb 6;355(6360):564-6. DOI:10.1038/355564a0 | PubMed ID:1741036 | HubMed [tha4]
  5. Macaya RF, Schultze P, Smith FW, Roe JA, and Feigon J. Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3745-9. PubMed ID:8475124 | HubMed [tha5]
All Medline abstracts: PubMed | HubMed

Presentations

Most recent (Week 3)

Week 2: Original proposal

Working Team Members