User:Noppadon Sathitsuksanoh

From OpenWetWare
Jump to navigationJump to search

Home      Research      People      Publications      Curriculum Vitae      News      Contact     


Error creating thumbnail: Unable to save thumbnail to destination
Tik held a bottle of booze from fermented switchgrass using engineered Bacillus subtilis. Thanks, Xiaozhou!


            Noppadon Sathitsuksanoh (Tik)
            Postdoctoral Fellow
            Joint BioEnergy Institute
            Lawrence Berkeley National Laboratory
            1 Cyclotron Rd.
            MS: 978-4121
            Berkeley, CA 94720
            Nsathitsuksanoh@lbl.gov
            Website: tik's world
            Website: tik's work







Summary

The theme of my research lies upon conversion of lignocellulosic biomass to building blocks for fuels and bioproducts. My diverse background allows me to interface chemistry, biology, and engineering as well as economics for development of green and efficient yet economical processes using a combination of enzymes and novel solid catalysts.


Primary Research

  1. Biomass saccharification for productions of biofuels and bioproducts
  2. Acid/base functionalized solid catalysts for integrated hydrolysis and hydrogenation of biomass components
  3. Tunable physiochemical properties of biomass that affect their chemical and biological functions
  4. Encapsulation of ZnO nanoparticles and their tailorable optical properties
  5. CO2 and H2S removal via novel entrapped/doped solid sorbents


Five Representative Publications

  1. Sathitsuksanoh N., Zhu Z., Wi S., Zhang YHP. Cellulose Solvent-Based Biomass Pretreatment Breaks Highly Ordered Hydrogen Bonds in Cellulose Fibers of Switchgrass. Biotechnology & Bioengineering, DOI: 10.1002/bit.22964.
  2. Sathitsuksanoh N.*, Wang D., Yang H.Y., Lu Y., and Park M. 2010. Photoluminescent Properties of Encapsulated ZnO in Porous Carbon Matrix. Acta Materialia 58: 373-378
  3. Sathitsuksanoh N., Zhu Z., Templeton N., Rollin J., Harvey S., Zhang Y-HP. 2009. Saccharification of a potential bioenergy crop, Phragmites australis (common reed), by lignocellulose fractionation followed by enzymatic hydrolysis at decreased cellulase loadings. Industrial & Engineering Chemistry Research 48: 6441-6447.
  4. Sathitsuksanoh N., Yang H.Y., Cahela D.R., and Tatarchuk B.J. 2007 Immobilization of CO2 by Aqueous K2CO3 Using Microfibrous Media Entrapped Small Particulates for Battery and Fuel Cell Applications. Journal of Power Sources 173: 478-4.
  5. Mondal K., Sathitsuksanoh N., Lalvani S.B. 2003. Extended X-ray Absorption Fine Structure Analysis of Ni-P and Fe-P Amorphous Alloys at the Phosphorous K-edge. Journal of Materials Science Letters 22(2): 95-97.