BME103:T930 Group 16 l2: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
Line 82: Line 82:
'''Background on Disease Markers'''
'''Background on Disease Markers'''


<!--- A description of the diseases and their associated SNP's (include the database reference number and web link) --->
Group 16 decided to investigate cystic fibrosis, a disease that is caused by mutations in a specific gene on the seventh chromosome, and is then passed down through families as a recessive trait. In this disease, mucus accumulates inside the lungs, digestive tract, and other cavities in the body. This life-threatening disease is the most common chronic lung disease to affect children and is often diagnosable by the age of two. However, weaker strains can go undetected until early adulthood. The effects of this disease, however, have been mediated through the use of treatments that can postpone some of the changes that occur in the lungs. Half of the patients with cystic fibrosis live past 28 years, and patients who only have mucus buildup in the digestive tract are even better off. Gene therapy holds great promise for treating cystic fibrosis. The marker associated with cystic fibrosis is a two nucleotide deletion and has identity rs200007348. This two nucleotide deletion is due to an adenine-guanine swap that occurs in the codon TGG. A codon is a genetic code involved in the RNA process that impacts protein translation. When the TGG undergoes the adenine guanine swap, it becomes TGA which codes for the stop codon, ending protein translation. This SNP heightens susceptibility to cystic fibrosis, a disease with the frequency 1 out of 2000 in Europe and 1 out of 3500 in the United States
 




Line 89: Line 88:
'''Primer Design'''
'''Primer Design'''


<!--- Include the sequences of your forward and reverse primers. Explain why a disease allele will give a PCR product and the non-disease allele will not. --->
Reverse primer: 3' CGTCTCTTACTCTATCTCTC 5'
 
Forward primer: 5' AAATATCTGGCTGAGTGTTT 3'
Cystic fibrosis is caused by a 3 bp deletion that leads to a protein which lacks a critical phenylalanine amino acid in the protein. PCR primers have been developed that can distinguish a normal gene from a mutant gene. With these primers a 154 bp product is produced from a normal individual and a 151 bp product is amplified from DNA of an individual with the disease. The disease allele is complementary which will result in a positive result in Open PCR. However, a regular allele cannot give a positive result because the lost nucleotides will be added back into the primer causing a frameshift mutation of three. Thus, these primers are built 151 bp apart and this shortens the temperature cycles from 30 seconds to 10 seconds.




Navigation menu