From OpenWetWare
Jump to navigationJump to search



Our research spans the disciplinary boundaries between nanotechnology, biomaterials, and mechanobiology with an emphasis on their applications to tissue engineering and regenerative medicine. Through the use of multi-scale (nano/micro/meso) fabrication and integration tools, we focus on the development and application of bio-inspired materials/devices and functional tissue engineering models for elucidating regenerative biology, drug screening, disease modeling, and stem cell-based therapies. Using engineered microenvironments in combination with quantitative live cell imaging approaches, we are also studying the intricate interactions between mechanical and biochemical signaling in the regulation of cell/tissue function and fate decisions that are essential for tumor progression and metastasis, tissue repair and regeneration following injury, and various developmental events. The ultimate goal of our research is to better understand complex cellular behavior in response to microenvironmental cues in normal, aging and disease states, to gain new mechanistic insights into the control of cell-tissue structure and function, and to develop multi-scale regenerative technologies for improving human health.


  • The Kim lab has been recently moved to the Johns Hopkins University School of Medicine! (09/2019)
  • Prof. Kim has been promoted to Associate Professor with Tenure! (09/2017)
  • Kim lab has been awarded a NIH R01 grant! (02/2017)
  • Peter Kim has been awarded the AHA Predoctoral Fellowship! (12/2014)
  • Cameron Nemeth has been given a BMES Undergraduate Design and Research Award and the Washington Research Foundation Fellowship. (Sept. 2013) Read more
  • Prof. Kim has been awarded the prestigious Young Investigator Award 2013 from the Korean-American Scientists and Engineers Association (KSEA). (06/2013)
  • Prof. Kim joined the editorial board of the Journal of Biomedical Nanotechnology as an Associate Editor. (05/ 2013)
  • Kim Lab has been awarded an Muscular Dystrophy Association (MDA) research grant to develop bioengineering techniques for growing muscle for use in transplantation into a mouse model of Duchenne muscular dystrophy. (02/2013)

Featured Publications

Our Sponsors:
   link =    link =         
link =    link =      link =    link =    link =