CASTDan:Abstract27

From OpenWetWare
Jump to navigationJump to search

Kostov, Y., Gea, X., Hanson, M., Shen, H.,Brorson, K.A. , Frey, D.D.,Moreira, A., Rao G., (2005) Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture, Science Direct, online

Abstract:


Cell culture optimization is a labor-intensive process requiring a large number of experiments to be conducted under varying conditions. Here we describe a high-throughput bioreactor system that allows 12 mini stirred-tank bioreactors to be operated simultaneously. All bioreactors are monitored by low-cost minimally invasive optical sensors for pH and dissolved oxygen. The sensors consist of single-use patches affixed inside the bioreactors and monitored optically from the outside. Experimental results show that different sensing patches with the same composition respond consistently. The discrepancy between different pH sensors is less than 0.1 pH units over most of their responsive range. The discrepancy between different dissolved oxygen sensors is less than 10% over the whole range from 0% to 100% dissolved oxygen. The consistency of the sensing system ensures that only an initial one-time calibration is required for the sensing patches. After that, a calibration code is generated and sensing patches of the same composition can be used directly. This greatly reduces the time and cost required for monitored multibioreactor operations.We used SP2/0 myeloma/mouse hybridoma cell cultures to demonstrate reactor performance consistency. Transcriptional profiling, HPLC analysis, viable cell count, and viability inspection show that the presence of sensing patches and the use of optical monitoring have no apparent effect on the metabolism of the cells.


Back to Full Publication

Back to Dr. YorDan Kostov's Page

Return to Center for Advanced Sensor Technology home page