Biomod/2012/Columbia/KinesinKings/Extras

From OpenWetWare

Jump to: navigation, search

Kinesin Kings Test

3D Rendering of Confocal Images

f9fe239f12b65bbe9e0265a9d571ca40.gif


References

  1. Agarwal, A., & Hess, H. (2010). Molecular Motors as Components of Future Medical Devices and Engineered Materials. Journal of Nanotechnology in Engineering and Medicine, 1(1), 011005. Retrieved from http://link.aip.org/link/JNEMAA/v1/i1/p011005/s1&Agg=doi
  2. Akhmanova, Anna, and Michel O. Steinmetz. “Tracking the Ends: a Dynamic Protein Network Controls the Fate of Microtubule Tips.” Nat Rev Mol Cell Biol 9, no. 4 (April 2008): 309–322.
  3. Astumian RD, Derényi I. A chemically reversible Brownian motor: application to kinesin and Ncd. Biophys J. 1999 Aug;77(2):993-1002.
  4. Astumian RD. The role of thermal activation in motion and force generation by molecular motors. Philos Trans R Soc Lond B Biol Sci. 2000 Apr 29;355(1396):511-22. Review.
  5. Bachand, George D., Henry Hess, Banahalli Ratna, Peter Satir, and Viola Vogel. “‘Smart Dust’ Biosensors Powered by Biomolecular Motors.” Lab on a Chip 9, no. 12 (2009): 1661.
  6. Konrad J. Böhm, Roland Stracke, Marina Baum, Martin Zieren, Eberhard Unger, Effect of temperature on kinesin-driven microtubule gliding and kinesin ATPase activity, FEBS Letters, Volume 466, Issue 1, 21 January 2000, Pages 59-62, ISSN 0014-5793, 10.1016/S0014-5793(99)01757-3. (http://www.sciencedirect.com/science/article/pii/S0014579399017573)
  7. Böhm KJ, Stracke R, Unger E. Speeding up kinesin-driven microtubule gliding in vitro by variation of cofactor composition and physicochemical parameters. Cell Biol Int. 2000;24(6):335-41.
  8. Brouhard, G. J. “XMAP215 Is a Processive Microtubule Polymerase.” Cell 132 (2008): 79–88.
  9. Busch, K. E., and D. Brunner. “The Microtubule Plus End-tracking Proteins Mal3p and Tip1p Cooperate for Cell-end Targeting of Interphase Microtubules.” Curr. Biol. 14 (2004): 548–559.
  10. Cooper GM. The Cell: A Molecular Approach. 2nd edition. Sunderland (MA): Sinauer Associates; 2000. Microtubules. Available from: http://www.ncbi.nlm.nih.gov/books/NBK9932/
  11. Doxsey, Stephen. “Re-evaluating Centrosome Function.” Nat Rev Mol Cell Biol 2, no. 9 (print 2001): 688–698.
  12. Duane A. Compton, In vitro approaches for the study of molecular motors in aster formation, In: Robert E. Palazzo, Trisha N. Davis, Editor(s), Methods in Cell Biology, Academic Press, 2001, Volume 67, Pages 225-239, ISSN 0091-679X, ISBN 9780125441704, 10.1016/S0091-679X(01)67016-X. (http://www.sciencedirect.com/science/article/pii/S0091679X0167016X)
  13. Erickson, H P, and E T O’Brien. “Microtubule Dynamic Instability and GTP Hydrolysis.” Annual Review of Biophysics and Biomolecular Structure 21, no. 1 (June 1992): 145–166.
  14. Foote M. Using nanotechnology to improve the characteristics of antineoplastic drugs: improved characteristics of nab-paclitaxel compared with solvent-based paclitaxel. Biotechnol Annu Rev. 2007;13:345-57. Review. PubMed PMID: 17875482.
  15. Fuller SD, Gowen BE, Reinsch S, Sawyer A, Buendia B, Wepf R, Karsenti E. The core of the mammalian centriole contains gamma-tubulin. Curr Biol. 1995 Dec 1;5(12):1384-93.
  16. Gaglio T, Saredi A, Compton DA. NuMA is required for the organization of microtubules into aster-like mitotic arrays. J Cell Biol. 1995 Nov;131(3):693-708.
  17. Galjart, Niels. “CLIPs and CLASPs and Cellular Dynamics.” Nat Rev Mol Cell Biol 6, no. 6 (June 2005): 487–498.
  18. Goode BL, Feinstein SC. Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol. 1994 Mar;124(5):769-82.
  19. Hawkins, Taviare, Matthew Mirigian, M. Selcuk Yasar, and Jennifer L. Ross. “Mechanics of Microtubules.” Journal of Biomechanics 43, no. 1 (January 2010): 23–30.
  20. Hess, Henry. “Engineering Applications of Biomolecular Motors.” Annual Review of Biomedical Engineering 13, no. 1 (August 15, 2011): 429–450.
  21. Hiratsuka, Yuichi, Tetsuya Tada, Kazuhiro Oiwa, Toshihiko Kanayama, and Taro Q.P. Uyeda. “Controlling the Direction of Kinesin-Driven Microtubule Movements Along Microlithographic Tracks.” Biophysical Journal 81, no. 3 (September 2001): 1555–1561
  22. Hiratsuka, Yuichi, Takashi Kamei, Noboru Yumoto, and Taro Q. P. Uyeda. “Three Approaches to Assembling Nano-bio-machines Using Molecular Motors.” NanoBiotechnology 2, no. 3–4 (September 2006): 101–115.
  23. Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004 Apr;4(4):253-65. Review.
  24. Lomakin, Alexis J., Pavel Kraikivski, Irina Semenova, Kazuho Ikeda, Ilya Zaliapin, Jennifer S. Tirnauer, Anna Akhmanova, and Vladimir Rodionov. “Stimulation of the CLIP-170–dependent Capture of Membrane Organelles by Microtubules Through Fine Tuning of Microtubule Assembly Dynamics.” Molecular Biology of the Cell 22, no. 21 (November 1, 2011): 4029 –4037.
  25. Maiato, H., J. DeLuca, E. D. Salmon, and W. C. Earnshaw. “The Dynamic Kinetochore-microtubule Interface.” J. Cell Sci. 117 (2004): 5461–5477.
  26. Mitchison, TJ. “Localization of an Exchangeable GTP Binding Site at the Plus End of Microtubules.” Science 261, no. 5124 (1993): 1044 –1047.
  27. Ndlec, F. J., T. Surrey, A. C. Maggs, and S. Leibler. “Self-organization of Microtubules and Motors.” Nature 389, no. 6648 (print 1997): 305–308.
  28. Nilsson, H. and Wallin, M. (1998), Microtubule aster formation by dynein-dependent organelle transport. Cell Motil. Cytoskeleton, 41: 254–263.
  29. Nogales, E., and H. W. Wang. “Structural Mechanisms Underlying Nucleotide-dependent Self-assembly of Tubulin and Its Relatives.” Curr. Opin. Struct. Biol. 16 (2006): 221–229.
  30. Okuro, Kou, Kazushi Kinbara, Kouhei Tsumoto, Noriyuki Ishii, and Takuzo Aida. “Molecular Glues Carrying Multiple Guanidinium Ion Pendants via an Oligoether Spacer: Stabilization of Microtubules Against Depolymerization.” J. Am. Chem. Soc. 131, no. 5 (2009): 1626–1627.
  31. Peris, L. “Tubulin Tyrosination Is a Major Factor Affecting the Recruitment of CAP-Gly Proteins at Microtubule Plus Ends.” J. Cell Biol. 174 (2006): 839–849.
  32. Ramachandran, S., Ernst, K.-H., Bachand, George D., Vogel, V. and Hess, H. (2006), Selective Loading of Kinesin-Powered Molecular Shuttles with Protein Cargo and its Application to Biosensing. Small, 2: 330–334. doi: 10.1002/smll.200500265
  33. Rankin, Kathleen E., and Linda Wordeman. “Long Astral Microtubules Uncouple Mitotic Spindles from the Cytokinetic Furrow.” The Journal of Cell Biology 190, no. 1 (July 12, 2010): 35 –43.
  34. Roseita Esfand, Donald A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications, Drug Discovery Today, Volume 6, Issue 8, 15 April 2001, Pages 427-436, ISSN 1359-6446, 10.1016/S1359-6446(01)01757-3. (http://www.sciencedirect.com/science/article/pii/S1359644601017573)
  35. Salmon, E. D. “Microtubules: a Ring for the Depolymerization Motor.” Curr. Biol. 15 (2005): R299–R302.
  36. Sumino, Yutaka, Ken H. Nagai, Yuji Shitaka, Dan Tanaka, Kenichi Yoshikawa, Hugues Chate, and Kazuhiro Oiwa. “Large-scale Vortex Lattice Emerging from Collectively Moving Microtubules.” Nature 483, no. 7390 (March 22, 2012): 448–452.
  37. Thomas N, Imafuku Y, Kamiya T, Tawada K. Kinesin: a molecular motor with a spring in its step. Proc Biol Sci. 2002 Nov 22;269(1507):2363-71. Review.
  38. Valiron O. New insights into microtubule elongation mechanisms. Commun Integr Biol. 2011 Jan;4(1):10-3.
  39. van der Vaart, Babet, Cristina Manatschal, Ilya Grigoriev, Vincent Olieric, Susana Montenegro Gouveia, Saša Bjelić, Jeroen Demmers, et al. “SLAIN2 Links Microtubule Plus End–tracking Proteins and Controls Microtubule Growth in Interphase.” The Journal of Cell Biology 193, no. 6 (June 13, 2011): 1083 –1099.
  40. Zheng, Yixian, Mei Lie Wong, Bruce Alberts, and Tim Mitchison. “Nucleation of Microtubule Assembly by a Γ-tubulin-containing Ring Complex.” Nature 378, no. 6557 (December 7, 1995): 578–583.



Kinesin Kings Test

Columbia

Views
Personal tools