User:Carly M. Montanero/Notebook/CHEM-571/2013/09/11

From OpenWetWare
BDLlogo notext lr.png Biomaterials Design Lab: Fall 2013 Report.pngMain project page
Resultset previous.pngPrevious entry      Next entryResultset next.png


  • To finish the procedure from yesterday.
  • Use the Atomic Absorption Spectrometer to test gold standards, citrate-AuNP solutions and BSA-AuNP solutions.


  • There was an error in placing the cuvette in the UV-Vis, so all of our data from yesterday is incorrect. We created new standards and reran each sample, correctly using the UV-Vis.
  • Today, we measured the concentrations in 10ml volumetric flask and the cuvette had a path length of 3cm.
  • Standard solutions of gold and previously made standards of citrate-AuNP and BSA-AuNP were analyzed with the Atomic Absorption Spectrometer.




  • Atomic Absorption Data for Gold Standard, BSA-AuNP Standard, and Citrate-AuNP Standard




Calculating the Number of Gold Atoms in Citrate-AuNP

  1. The equation of the best fit line from the class data was y = 3x10-5x2 + 0.0209x.
  2. The average of our corrected citrate-AuNP concentration was 0.1444 μg/mL.
  3. Setting 0.1444 equal to y yields the equation 0.1444 = 3x10-5x2 + 0.0209x.
  4. Solving the quadratic equation gives two answers: x = -703.51 and x = 6.842.
  5. Disregarding the negative value, the 6.842 μg/mL corresponds to the concentration of gold.
  6. We diluted the sample of gold by 10, so the actual concentration is 0.06842 g/L.
  7. The molecular weight of gold is 196.97 g/mol.
  8. Converting the concentration of gold to molarity yields a concentration of 3.474x10-4 M gold.
  9. Dividing the concentration of gold (3.474x10-4) M by the concentration of citrate-AuNP ( 9.17×10-9M) gives the final number of gold atoms per citrate-AuNP molecule.
  10. Though these calculations, there are 37,884 gold atoms per citrate-AuNP molecule.


The UV-Vis spectra of trial 4 Bradford Assay of horseradish peroxidase had some serious errors. We discarded the data.