User:Carl Boettiger/Notebook/Comparative Phylogenetics/2010/04/18
Comparative Phylogenetics | Main project page Previous entry Next entry |
MATICCE
The ApproachTakes a brute force approach to avoid user-defined paintings in the ouch framework. Users identify nodes of interest, software tries combinations of possible shifts. runBatchHansen()
What models/regimes are tested?
Output See loglik, sigma and alpha values of the models tested (doesn't include brownian motion by default) <syntaxhighlight lang="rsplus"> trialBayesConsensus <- runBatchHansen(ape2ouch(carex$ovales.tree), carex$ovales.data, carex$ovales.nodes[1:4], maxNodes = 2) > trialBayesConsensus$hansen 1 loglik dof sigma.squared theta / alpha 1 52.72744 5 5.31005363 331.626872 2 50.54000 5 5.86424413 337.252821 3 50.21561 5 6.04474990 343.369492 4 49.95720 4 5.14354118 289.387746 5 51.75330 5 5.12434568 308.473054 6 51.81077 5 4.84664447 292.440242 7 51.75142 4 5.16258108 310.762680 8 44.31518 5 6.55448190 297.993592 9 44.17736 4 8.49647580 384.329498 10 42.89766 4 6.87292796 296.238909 11 39.57676 3 0.09810907 3.341806
> trialBayesConsensus$regMatrix 1 1 2 3 4 1 1 1 0 0 2 1 0 1 0 3 1 0 0 1 4 1 0 0 0 5 0 1 1 0 6 0 1 0 1 7 0 1 0 0 8 0 0 1 1 9 0 0 1 0 10 0 0 0 1 11 0 0 0 0 </syntaxhighlight> Where the four nodes are shown as separate columns, and there numbers correspond to their indices specified in ovales.nodes. multiModel()For a focal node, there are 5 hypotheses we want to distinguish:
Note that the first three of these cases are among the cases covered in a runBatchHansen() over the node. Other functions
Other NotesEvaluation
Notes / Reading
|