User:Alexander T. J. Barron/Notebook/PHYC 307L Lab Notebook/speed of light notes
Contents
Speed of Light Lab
Set Up
Instrumentation
PMT: Perfection Mica Company N134
Powering Up
Beginnng by powering the PMT at 1900 V. Power to LED: 190 V
At first we were unable to see any signal in the oscilloscope directly from either the PMT or the TAC. Then we moved our LED farther into the tube. We received our first signal peaking at about 1 V from the PMT.
We wanted to make sure that this signal was in fact due to the electric field of the light coming from the LED. And, in order to attain the best amplitude we rotated the PMT until its polarizer let in the greatest intensity.
After some adjustments were able to see a signal on the oscilloscope as such:
Directly from the PMT: 500800 mV From the TAC: a square wave slightly delayed from the PMT signal at about 6 V
Data Trial
Oscilloscope:With ch 1 reading at 50mV and ch 2 reading at 500 mV with 250 ns divisions...
Data 1: Ch1 signal voltage: 192mV
Ch2 voltage: 4.92+ .08 V
Calibration
Instrumentation
PMT: Perfection Mica Company N134
Powering Up
Beginnng by powering the PMT at 1900 V. Power to LED: 190 V
At first we were unable to see any signal in the oscilloscope directly from either the PMT or the TAC. Then we moved our LED farther into the tube. We received our first signal peaking at about 1 V from the PMT.
We wanted to make sure that this signal was in fact due to the electric field of the light coming from the LED. And, in order to attain the best amplitude we rotated the PMT until its polarizer let in the greatest intensity.
After some adjustments were able to see a signal on the oscilloscope as such:
Directly from the PMT: 500800 mV From the TAC: a square wave slightly delayed from the PMT signal at about 6 V
Calibration Data
Delay  Trial #1  Trial #2 

0 ns  4.92 +/ .08 V  4.90 +/ .08 V 
0.5 ns  5.02 +/ .06 V  4.98 +/ .1 V 
1.0 ns  5.12 +/ .08 V  5.04 +/ .08 V 
2.0 ns  5.30 +/ .06 V  5.28 +/ .12 V 
4.0 ns  5.72 +/ .08 V  5.72 +/ .1 V 
After consulting with Dr. Koch, we decided to not calibrate ourselves, instead using the TAC manual's calibration control settings:
10V = 50 ns
Brief Note on Experiment Anomaly
During the setup stage, we noticed that the output from the PMT was significantly altered whenever we connected or disconnected the TAC. This didn't seem to make sense, as I believe the signal measured directly from the PMT is on a totally different circuit from that routed through the TAC. We threw ideas around with Dr. Koch, discussing possible ground leakage/contamination and effects of electric field wavelengths vs. lengths of cable, but the discussion came up inconclusive. Terminating with a 50 Ω resistor at the oscilloscope killed the output entirely  I know so little about circuits other than basic DC stuff... we need an expert. Whatever effect this anomaly had didn't seem to throw the experiment out of whack, since our results came out pretty tasty.
Data
NOTE: ALL ΔX VALUES MEASURED FROM THE ENDPOINT OF THE PREVIOUS MEASUREMENT
 
All voltages measured with ± .02 V measurement error. 
Data Analysis
I can obtain Δt for each Δx with the TAC's calibration: Failed to parse (syntax error): {\displaystyle Δt = V_{meas} \times (5) 10^{9} s}
The best estimate of the speed of light in air, c_{air}, is the slope of the leastsquares linear fit of the data, x vs. t.
I obtain error on c_{air} through linear approximation:
Since c_{air} depends on two measured values, x & t, with standard error σ_{x}, σ_{t}...
^{SJK 00:16, 1 November 2008 (EDT)}
With this propagated error, I can tastefully display my best value along with its error bounds, , as below:
NOTE: AXES ARE SET TO "TIGHT," SO SOME DATA POINTS ARE ON GRAPH EDGES
Trial  Graphic Representation  Trial  Graphic Representation 
Trial 1:
Upper Error Bound:
Lower Error Bound:


Trial 2:
Upper Error Bound:
Lower Error Bound:


Trial 3:
Upper Error Bound:
Lower Error Bound:


Trial 4: (no time walk correction)
Upper Error Bound:
Lower Error Bound:


I notice that error range decreases with more measurements, but not necessarily accuracy. Here is a plot of all values with error compared to the accepted speed of light in air:
It appears that measurements taken over a large individual & total Δx, as in trials 1 & 3, yield the best results for c. Unfortunately, this experimental setup limits how much data can be taken this way, so the error is large. Small individual and total Δx yields an awful result, even though more data points narrowed the error range. The result of trial 4 illustrates how important adjusting for time walk is  c "walked" an entire order of magnitude! I wonder if taking data with small individual Δx over large total Δx would allow for the linear fit to filter out the "noise" from each small measurement in order to find the real trend of c. I believe the large amount of noise, from small xstepping, combined with the small data range forced the trial 2 result far from its actual value.
This experiment and result illustrates the mechanics of accuracy of precision rather well, I think. Trial 2 is not accurate at all, but is much more precise than our more accurate measurements. I believe the lesson to take away from this is that narrowing error isn't the entire battle  what good does small error do when the physical value isn't inside error bounds?
Code
Used in MATLAB to obtain all above results, with appropriate lyrics:
^{SJK 23:46, 31 October 2008 (EDT)}^{SJK 01:23, 1 November 2008 (EDT)}%% Speed of Light (not Ray of Light...Madonna....heh) close all, clear all; %% Trial 1 (And I Feel!) Vvec1 = [2.54 2.40 2.06 1.82 1.66]; % Voltage info Vvec1 = Vvec1  2.62; xvec1 = [15 35 65 105 154]; % Distance info xvec1 = xvec1./100; Tvec1 = Vvec1.*5.*10^9; % Applying documented TAC calibration fitcoeff1 = polyfit(Tvec1,xvec1,1) % Leastsquares linear fit t1 = linspace(Tvec1(1),Tvec1(end)); fit1 = polyval(fitcoeff1,t1); scrsz = get(0,'ScreenSize'); figure('Position',[1 scrsz(4)/1.5 scrsz(3)/1.55 scrsz(4)/1.6]); plot(Tvec1,xvec1,'ok'); hold on; plot(t1,fit1,'k'); xlabel('t [s]'); ylabel('x [m]'); errT1 = std(Tvec1)/(length(Tvec1))^.5; errx1 = std(xvec1)/(length(xvec1))^.5; meanT1 = mean(Tvec1); meanx1 = mean(xvec1); errquad1 = ((errx1./meanT1).^2 + (errT1.*meanx1./(meanT1).^2).^2).^.5 bupper1 = fitcoeff1(1) + errquad1; blower1 = fitcoeff1(1)  errquad1; fitcoeff1upper = [bupper1 fitcoeff1(2)] fitcoeff1lower = [blower1 fitcoeff1(2)] fit1upper = polyval(fitcoeff1upper,t1); fit1lower = polyval(fitcoeff1lower,t1); hold on; grid on; axis tight; plot(t1,fit1upper,'b'); plot(t1,fit1lower,'r'); legend('Trial 1 Data','Linear Fit','Upper Error Bound','Lower Error Bound','Location'... ,'NorthWest'); title('Trial 1') %% Trial 2 (...Like I Just Got Home!) Vvec2 = [7.74 7.56 7.42 7.52 7.40 7.32 7.24 7.50 7.18 7.26]; % Voltage info Vvec2 = Vvec2  7.76; xvec2 = [5 10 15 20 25 30 35 40 45 50]; % Distance info xvec2 = xvec2./100; Tvec2 = Vvec2.*5.*10^9; % Applying documented TAC calibration fitcoeff2 = polyfit(Tvec2,xvec2,1) % Leastsquares linear fit t2 = linspace(min(Tvec2),max(Tvec2)); fit2 = polyval(fitcoeff2,t2); scrsz = get(0,'ScreenSize'); figure('Position',[1 scrsz(4)/1.5 scrsz(3)/1.55 scrsz(4)/1.6]); plot(Tvec2,xvec2,'ok'); hold on; plot(t2,fit2,'k'); xlabel('t [s]'); ylabel('x [m]'); errT2 = std(Tvec2)/(length(Tvec2))^.5; errx2 = std(xvec2)/(length(xvec2))^.5; meanT2 = mean(Tvec2); meanx2 = mean(xvec2); errquad2 = ((errx2./meanT2).^2 + (errT2.*meanx2./(meanT2).^2).^2).^.5 bupper2 = fitcoeff2(1) + errquad2; blower2 = fitcoeff2(1)  errquad2; fitcoeff2upper = [bupper2 fitcoeff2(2)] fitcoeff2lower = [blower2 fitcoeff2(2)] fit2upper = polyval(fitcoeff2upper,t2); fit2lower = polyval(fitcoeff2lower,t2); hold on; grid on; axis tight; plot(t2,fit2upper,'b'); plot(t2,fit2lower,'r'); legend('Trial 2 Data','Linear Fit','Upper Error Bound','Lower Error Bound','Location'... ,'NorthWest'); title('Trial 2') %% Trial 3 (And I Feel!) Vvec3 = [7.78 7.42 7.38 7.30 7.50 7.24]; % Voltage info Vvec3 = Vvec3  7.80; xvec3 = [25 50 75 100 125 150]; % Distance info xvec3 = xvec3./100; Tvec3 = Vvec3.*5.*10^9; % Applying documented TAC calibration fitcoeff3 = polyfit(Tvec3,xvec3,1) % Leastsquares linear fit t3 = linspace(min(Tvec3),max(Tvec3)); fit3 = polyval(fitcoeff3,t3); scrsz = get(0,'ScreenSize'); figure('Position',[1 scrsz(4)/1.5 scrsz(3)/1.55 scrsz(4)/1.6]); plot(Tvec3,xvec3,'ok'); hold on; plot(t3,fit3,'k'); xlabel('t [s]'); ylabel('x [m]'); errT3 = std(Tvec3)/(length(Tvec3))^.5; errx3 = std(xvec3)/(length(xvec3))^.5; meanT3 = mean(Tvec3); meanx3 = mean(xvec3); errquad3 = ((errx3./meanT3).^2 + (errT3.*meanx3./(meanT3).^2).^2).^.5 bupper3 = fitcoeff3(1) + errquad3; blower3 = fitcoeff3(1)  errquad3; fitcoeff3upper = [bupper3 fitcoeff3(2)] fitcoeff3lower = [blower3 fitcoeff3(2)] fit3upper = polyval(fitcoeff3upper,t3); fit3lower = polyval(fitcoeff3lower,t3); hold on; grid on; axis tight; plot(t3,fit3upper,'b'); plot(t3,fit3lower,'r'); legend('Trial 3 Data','Linear Fit','Upper Error Bound','Lower Error Bound','Location'... ,'NorthWest'); title('Trial 3') %% Trial 4 (...Quicker than a Ray of Light!) Vvec4 = [6.30 5.84 5.32 4.74 4.50]; % Voltage info Vvec4 = Vvec4  6.48; xvec4 = [10 20 30 40 50]; % Distance info xvec4 = xvec4./100; Tvec4 = Vvec4.*5.*10^9; % Applying documented TAC calibration fitcoeff4 = polyfit(Tvec4,xvec4,1) % Leastsquares linear fit t4 = linspace(min(Tvec4),max(Tvec4)); fit4 = polyval(fitcoeff4,t4); scrsz = get(0,'ScreenSize'); figure('Position',[1 scrsz(4)/1.5 scrsz(3)/1.55 scrsz(4)/1.6]); plot(Tvec4,xvec4,'ok'); hold on; plot(t4,fit4,'k'); xlabel('t [s]'); ylabel('x [m]'); errT4 = std(Tvec4)/(length(Tvec4))^.5; errx4 = std(xvec4)/(length(xvec4))^.5; meanT4 = mean(Tvec4); meanx4 = mean(xvec4); errquad4 = ((errx4./meanT4).^2 + (errT4.*meanx4./(meanT4).^2).^2).^.5 bupper4 = fitcoeff4(1) + errquad4; blower4 = fitcoeff4(1)  errquad4; fitcoeff4upper = [bupper4 fitcoeff4(2)] fitcoeff4lower = [blower4 fitcoeff4(2)] fit4upper = polyval(fitcoeff4upper,t4); fit4lower = polyval(fitcoeff4lower,t4); hold on; grid on; axis tight; plot(t4,fit4upper,'b'); plot(t4,fit4lower,'r'); legend('Trial 4 Data','Linear Fit','Upper Error Bound','Lower Error Bound','Location'... ,'NorthWest'); title('Trial 4') %% Comparison (She's Got Herself a Universe) trial1mean = ones(1,2).*fitcoeff1(1); trial1up = ones(1,2).*bupper1; trial1low = ones(1,2).*blower1; trial2mean = ones(1,2).*fitcoeff2(1); trial2up = ones(1,2).*bupper2; trial2low = ones(1,2).*blower2; trial3mean = ones(1,2).*fitcoeff3(1); trial3up = ones(1,2).*bupper3; trial3low = ones(1,2).*blower3; trial4mean = ones(1,2).*fitcoeff4(1); trial4up = ones(1,2).*bupper4; trial4low = ones(1,2).*blower4; real = ones(1,2).*2.981.*10^8; compvec = [1 2]; figure('Position',[1 scrsz(4)/1.5 scrsz(3)/1.55 scrsz(4)/1.6]); meanvec = {trial1mean,trial2mean,trial3mean,trial4mean}; upvec = {trial1up,trial2up,trial3up,trial4up}; lowvec = {trial1low,trial2low,trial3low,trial4low}; plot(compvec,meanvec{1},'b',compvec,meanvec{2},'r',compvec,meanvec{3},'g',compvec,... meanvec{4},'c'); hold on; plot(compvec,real,'k'); legend('Trial 1','Trial 2','Trial 3','Trial 4','Accepted Value'); plot(compvec,upvec{1},'b',compvec,upvec{2},'r',compvec,upvec{3},'g',compvec,... upvec{4},'c'); plot(compvec,lowvec{1},'b',compvec,lowvec{2},'r',compvec,lowvec{3},'g',... compvec,lowvec{4},'c'); title('Comparison');