TChan/Notebook/2007-5-3
From OpenWetWare
Jump to navigationJump to search
Presentation
Stuff done
1. General output
INPUT: Disease name
OUTPUT: Targeted URLs and lists of data that would be of interest to the patient
Targeted data (from MedStory)
- Drugs
- Experts
- Drugs in clinical trials
- Procedures
Targeted URL outputs
- MedStory
- eMedicine
- Google (general)
- Google (treatment)
- Wikipedia
- WHO
- GeneCards
2. Allelic frequency
INPUT: RS#
OUTPUT: parsed allelic frequency data from dbSNP
- Though started by looking at GeneCards, saw that GeneCards takes its data from dbSNP, so decided to go to the source.
- Download dbSNP HTML file targeted to the RS#
- Extract the line of HTML describing allelic frequency
- Provision: if no allelic frequency data, will tell user
- Break it down into HTML table-row chunks, convenient because the different rows stand for different population groups
- Extract the categories of data
- Extract all the data from the populations
- ss#
- Provisions: if no ss# in that row (because multiple population groups are combined under one ss#), will return in the ss# position in the list
- Population Name - technical name of the population
- Individual Group - race of people in population
- Chromosome Sample Count - number of chromosomes analyzed in the population
- Source - ?
- Allele Combinations - SNP means that there will be differing nucleotides in the population
- Provisions: allows for empty allele combinations
- HWP - ?
- Alleles - frequency of the individual alleles
- Provisions: allows for empty allele combinations
- ss#
Lessons learned
- In order to build something in a large group like this one:
- (visually, if possible) plot out:
- general framework
- what needs to be done
- what is being done, and
- by whom.
- (This was also an iGEM lesson.)
- (visually, if possible) plot out:
- Scientific foresight
- We're pretty darn near-sighted, in general.
- Don't bite off more than you can chew.
- (Corollary) Don't let tasks go by you.
- IDLE is useful.
- Front end is more fun than back end.
- Programming is fun for the brain - much more so than writing papers.
Things I now know how to do
- Use BioPython to program simple stuff
- Use Python to access search sites
- URL (cheap way)
- Parse XML, the nice way
- Parse HTML, the brute force way
- Read HTML forms
- Look at installed code to figure out how to program my own tasks
- Write functions
- Do research online to figure out how to complete a programming task
- (Related) How to decide whether or not and how to complete a programming task
- Break programs down
Things I now know exist
- BioPython! (And its API.)
- IDLE
- Help sites for Python
- Especially for interfaces with other data
- Python: __init__, XML parsers, installed code
- NCBI: multiple forms of BLAST, GenBank, OMIM
- GeneCards, HapMap, PolyPhenk, MeSH Terms
- POST and GET
- Locally-kept databases
- Interesting methods for strings
Allelic Frequency
- Input: rs# (string)
- Output: allelic frequency data (list of lists (of lists, in some cases))
Sample Input
"rs11200538"
Code
import urllib
# Definitions of functions
# Returns the dbSNP URL for the search term
def parse_for_dbSNP_search(search_term):
#search_term will be initial input, the RS# in a string (ie. "rs11200538" or "11200538")
parsed_term = search_term.replace("rs", "")
return "http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?rs=%s" % parsed_term
# Grabs the dbSNP HTML search_file
def get_dbSNP_search_file(URL, genl_search_file):
URL_stream_genl = urllib.urlopen(URL)
page = URL_stream_genl.read()
URL_stream_genl.close()
genl_search_file.write(page)
# Extracts out the relevant allelic frequency line from the dbSNP HTML search file
def extract_allelic_freq_line(dbSNP_file):
for line in dbSNP_file:
if line.find('''Alleles</TH></TR><TR ><TH bgcolor="silver">ss''') != -1:
return line
elif line.find('''There is no frequency data.''') != -1:
better_luck_next_time = ''
return better_luck_next_time
# Divides the relevant allelic frequency line into separate HTML-table 'rows', which delineate the populations
def divide_freq_line_into_TRs(freq_line):
TR_list = []
while freq_line.rfind("<TR") != -1:
TR_instance = freq_line.rfind("<TR")
TR_list.insert(0, freq_line[TR_instance:(len(freq_line))])
freq_line = freq_line[0:TR_instance]
TR_list.insert(0, freq_line)
return TR_list
# Parses out (1) categories, and (2) population rows
def extract_categories_and_population_TRs(categories, population_list, TR_list):
for element in TR_list:
if element.find('''ss#''') != -1:
categories = element
elif element.find('''<td ><a href="snp_viewTable.cgi?pop=''') != -1:
population_list.append(element)
return categories, population_list
def parse_IMG_tags_out_of_category(category):
if "<IMG" in category:
category = category[0:category.find("<IMG")]
return category
def parse_BR_tags_out_of_category(category):
br = "<BR>", "<br>"
if category.endswith(br):
category = category[0:len(category)-4]
category = category.replace("<BR>", ' ')
category = category.replace("<br>", ' ')
return category
# Returns cleaned-up categories (ie. ss#, Population, etc.)
def parse_categories(categories):
categories_list = []
while categories.rfind('''<TH bgcolor="silver">''') != -1:
category_instance = categories.rfind('''<TH bgcolor="silver">''')
end_tag_instance = categories.rfind('''</TH>''')
categories_list.insert(0, categories[(category_instance+22):end_tag_instance])
categories = categories[0:category_instance]
for index in range(len(categories_list)):
categories_list[index] = parse_IMG_tags_out_of_category(categories_list[index])
categories_list[index] = parse_BR_tags_out_of_category(categories_list[index])
return categories_list
# Extraction functions to parse allelic frequency data from populations
# Returns whether or not the particular population in population_list has an ss_numb
def ss_numb_in_population(population):
if '''<a href="snp_ss.cgi?ss=''' in population:
return True
else:
return False
def extract_ss_numb(population):
#SS_numb START: after '''<a href="snp_ss.cgi?ss='''
#SS_numb END: before the '''">''' immediately after '''<a href="snp_ss.cgi?ss='''
if ss_numb_in_population(population):
ss_numb = population[population.find('''<a href="snp_ss.cgi?ss=''')+23:population.find('''">''',
population.find('''<a href="snp_ss.cgi?ss='''))]
last_index = population.find('''">''', population.find('''<a href="snp_ss.cgi?ss=''')) + 2
else:
ss_numb = ''
last_index = 0
return ss_numb, last_index
def extract_population_name(population, last_index):
#population_name START: after the '''">''' immediately after '''<a href="snp_viewTable.cgi?pop='''
#population_name END: before the '''</a>''' that occurs after '''<a href="snp_viewTable.cgi?pop='''
population_name = population[population.find('''">''', population.find('''<a href="snp_viewTable.cgi?pop='''))+2:
population.find('''</a>''', population.find('''<a href="snp_viewTable.cgi?pop='''))]
last_index = population.find('''</a>''', population.find('''<a href="snp_viewTable.cgi?pop=''')) + 5
return population_name, last_index
def extract_group(population, last_index):
start_point = population.find('''<td >''', last_index) + 5
group = population[start_point:population.find('''</td>''', start_point)]
last_index = population.find('''</td>''', start_point) + 5
return group, last_index
def extract_chrom_cnt(population, last_index):
start_point = population.find('''<td >''', last_index) + 5
chrom_cnt = population[start_point:population.find('''</td>''', start_point)]
chrom_cnt = chrom_cnt.strip()
last_index = population.find('''</td>''', start_point)
return chrom_cnt, last_index
def extract_source(population, last_index):
start_point = population.find('''<td >''', last_index) + 5
source = population[start_point:population.find('''</td>''', start_point)]
source = source.strip()
last_index = population.find('''</td>''', start_point)
return source, last_index
def extract_allele_combos(num_of_allele_combos, population, last_index):
# This function works even if there are identical allele combos
allele_combos = []
start_point = population.find('''<FONT size="-1">''', last_index) + 17
for i in range(num_of_allele_combos):
allele_combo = population[start_point:population.find('''</FONT>''', start_point)]
allele_combos.append(allele_combo)
last_index = start_point + 5
start_point = population.find('''<FONT size="-1">''', population.find('''</FONT>''', start_point)) + 17
for j in range(num_of_allele_combos):
allele_combos[j] = allele_combos[j].strip()
return allele_combos, last_index
def extract_HWP(population, last_index):
# This function works even if the last allele_combo was ''
start_point = population.find('''<FONT size="-1">''', last_index) + 17
HWP = population[start_point:population.find('''</FONT>''', start_point)]
HWP = HWP.strip()
last_index = population.find('''</FONT>''', start_point)
return HWP, last_index
def extract_alleles(num_of_alleles, population, last_index):
alleles = []
start_point = population.find('''<FONT size="-1">''', last_index) + 17
for i in range(num_of_alleles):
if start_point != 16: #ie. if the population.find returned -1 because no more '''<FONT size="-1">'''s were found, + 17
allele = population[start_point:population.find('''</FONT>''', start_point)]
alleles.append(allele)
last_index = start_point + 5
start_point = population.find('''<FONT size="-1">''', population.find('''</FONT>''', start_point)) + 17
else:
alleles.append('')
for j in range(num_of_alleles):
alleles[j] = alleles[j].strip()
return alleles, last_index
# Master function to compile the list of lists (of lists) that holds all the interesting allelic frequency data
def parse_population_list(num_of_allele_combos, num_of_alleles, population_list, master_data_list):
for index in range(len(population_list)):
last_index = 0
ss_numb = ''
ss_numb, last_index = extract_ss_numb(population_list[index])
population_name, last_index = extract_population_name(population_list[index], last_index)
group, last_index = extract_group(population_list[index], last_index)
chrom_cnt, last_index = extract_chrom_cnt(population_list[index], last_index)
source, last_index = extract_source(population_list[index], last_index)
allele_combos, last_index = extract_allele_combos(num_of_allele_combos, population_list[index], last_index)
HWP, last_index = extract_HWP(population_list[index], last_index)
alleles, last_index = extract_alleles(num_of_alleles, population_list[index], last_index)
master_data_list.append([ss_numb, population_name, group, chrom_cnt, source, allele_combos, HWP, alleles])
return master_data_list
#BEGIN ACTUAL PROGRAM
search_term = "rs185079" # example search_term for now; will be returned by rest of program when finished
search_file_name = "%s_dbSNP.html" % search_term
dbSNP_file = open(search_file_name, 'w')
URL = parse_for_dbSNP_search(search_term)
get_dbSNP_search_file(URL, dbSNP_file)
dbSNP_file.close()
dbSNP_file = open(search_file_name, 'r')
freq_line = extract_allelic_freq_line(dbSNP_file)
dbSNP_file.close()
if freq_line != '':
TR_list = divide_freq_line_into_TRs(freq_line)
categories = ''
population_list = []
categories, population_list = extract_categories_and_population_TRs(categories, population_list, TR_list)
categories_list = []
categories_list = parse_categories(categories)
num_of_categories = len(categories_list)
num_of_allele_combos = categories_list.count('A/A') + categories_list.count('A/T') + categories_list.count('A/C') + categories_list.count('A/G') + categories_list.count('T/A') + categories_list.count('T/T') +categories_list.count('T/C') + categories_list.count('T/G') + categories_list.count('C/A') + categories_list.count('C/T') + categories_list.count('C/C') + categories_list.count('C/G') + categories_list.count('G/A') + categories_list.count('G/T') + categories_list.count('G/C') + categories_list.count('G/G')
num_of_alleles = categories_list.count('A') + categories_list.count('T') + categories_list.count('C') + categories_list.count('G')
master_data_list = []
master_data_list.append(categories_list)
master_data_list = parse_population_list(num_of_allele_combos, num_of_alleles, population_list, master_data_list)
for row in master_data_list:
print row
else:
print '''Sorry, there is no frequency data.'''
Sample Output
['ss#', 'Population', 'Individual Group', 'Chrom. Sample Cnt.', 'Source', 'A/A', 'A/G', 'G/G', 'HWP', 'A', 'G'] ['ss16081968', 'HapMap-CEU', 'European', '118', 'IG', ['0.983', '0.017', ''], '1.000', ['0.992', '0.008']] ['', 'HapMap-HCB', 'Asian', '90', 'IG', ['0.556', '0.356', '0.089'], '0.584', ['0.733', '0.267']] ['', 'HapMap-JPT', 'Asian', '90', 'IG', ['0.533', '0.356', '0.111'], '0.371', ['0.711', '0.289']] ['', 'HapMap-YRI', 'Sub-Saharan African', '120', 'IG', ['1.000', '', ''], '1.000', ['', '']] ['', 'CHMJ', 'Asian', '74', 'IG', ['', '', ''], '0.757', ['0.243', '']] ['ss24106683', 'AFD_EUR_PANEL', 'European', '48', 'IG', ['0.917', '0.083', ''], '1.000', ['0.958', '0.042']] ['', 'AFD_AFR_PANEL', 'African American', '44', 'IG', ['1.000', '', ''], '1.000', ['', '']] ['', 'AFD_CHN_PANEL', 'Asian', '48', 'IG', ['0.583', '0.333', '0.083'], '0.655', ['0.750', '0.250']]
- The categories in master_data_list[0] correspond to the data items in each of the following rows.
- For convenience, the allele_combos frequencies and the allele frequencies were collected in to their own lists.
If no frequency data is given by dbSNP, the following will be output:
Sorry, there is no frequency data.