IGEM:Caltech/2007/Project/Riboregulator: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 36: Line 36:
'''Trans Activation'''  
'''Trans Activation'''  


To initiate translation, five trans-activating elements (ta1-ta5) were designed. Each sequence binds to the cis-repressive elements and opens up the RBS. For ta1-ta4, part of the sequence was complementary to the hairpin loop of the cr element and extending in the 5’ direction. Element ta5 was designed to bind to the 5’ end of the cis regulator and open up the hairpin in the 3’ direction. ta1 and ta2 were complimentary to cr1-4; ta3-5 were complimentary to cr5-8. The energies of the trans and trans and cis combinations are given in Table 2. The activation with these ta elements has not yet been determined.  
To initiate translation, five trans-activating elements (ta1-ta5) were designed. Each sequence binds to the cis-repressive elements and opens up the RBS. For ta1-ta4, part of the sequence was complementary to the hairpin loop of the cr element and extending in the 5’ direction. Element ta5 was designed to bind to the 5’ end of the cis regulator and open up the hairpin in the 3’ direction. ta1 and ta2 were complimentary to cr1-4; ta3-5 were complimentary to cr5-8. The energies of the trans and trans and cis combinations are given in Table 2. The activation with these ta elements has not yet been determined.
 
 


[[Image:Cis designs 1.JPG|left|thumb|800px|All 8 cis-repressive elements have similar structure but differ in the number of base-pairs in end-loops, number of bulges, and number of base pairs on the 5' toe. They were designed this way to find the optimal dynamic range in repression/activation of protein expression.]]


==Experiments with Riboregulators==
==Experiments with Riboregulators==
96

edits

Navigation menu