Nannochloropsis localization peptides

From OpenWetWare
Jump to navigationJump to search

Internal structure/organelles

Localization peptides

To direct proteins to specific cell compartments small signaling peptides are often present on one of the ends. So far the localization peptides used are mainly from endogenous sequences.

A heterokont specific localization peptide prediction software, HECTAR, can indicate where a protein will localize and can be used to identify specific sections of a protein involved in determining location. http://webtools.sb-roscoff.fr/

Chloroplast

The VCP N' termini sequence is predicted to have a bipartite sequence similar to other stramenopiles. Fusion with GFP directs the protein to the plastid which can be observed with fluorescence microscopy.



PPC

NosDer1-1 (symbiont degradation in the ER 1) aa 1-88: MRQRGTEVSRRPWSILMLLLVMSGLQCLGVEAVQPPQRKLGIVQPHLKRLGTKDSLPSPALVLSRRRDLAIRSSSRGEGADSPSRWLT

Stroma

NoVCP1 (violaxanthin/chlorophyll a-binding protein 1) aa 1-33: MKTAALLTVSTLMGAQAFMAPAPKFSRTRGVAR

ER

Desaturase fluorescent protein fusions were located in the ER and predicted to contain small ER retention sequences.


NoPDI (protein disulphide isomerase) aa 1-28: MNRLLFGVFALAMALQGTAGATVEKDGS



Nucleus

The SV40 nuclear localization sequence has been used by several groups to direct Cas9 to the nucleus.

SV40 NLS (simian virus 40 nuclear localization sequence): PKKKRKV


Lipid droplet

Peroxisome

Mitochondria

NoOxa1 (oxidase assembly protein 1) aa 1-104: MMRLGGQGTKILSRRRPPPSPSAAEAVHSRQGAKAVRQHLSACMATFSPSHRRAHRLAPTFALSSYRAFSVSSSVPTTDLSTSPLSHSSLEDSTTWHAWIYDSI


Secretion

Published studies

Moog, D., Stork, S., Reislöhner, S., Grosche, C., & Maier, U.-G. (2015). In vivo Localization Studies in the Stramenopile Alga Nannochloropsis oceanica. Protist, 166(1), 161–171. https://doi.org/10.1016/j.protis.2015.01.003

Vieler, A., Brubaker, S. B., Vick, B., & Benning, C. (2012). A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins. Plant Physiology, 158(4), 1562–1569. https://doi.org/10.1104/pp.111.193029

Nobusawa, T., Hori, K., Mori, H., Kurokawa, K., & Ohta, H. (2017). Differently localized lysophosphatidic acid acyltransferases crucial for triacylglycerol biosynthesis in the oleaginous alga Nannochloropsis. The Plant Journal, 90(3), 547–559. https://doi.org/10.1111/tpj.13512

Wang, Q., Lu, Y., Xin, Y., Wei, L., Huang, S., & Xu, J. (2016). Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. The Plant Journal, 88(6), 1071–1081. https://doi.org/10.1111/tpj.13307

Poliner, E., Pulman, J. A., Zienkiewicz, K., Childs, K., Benning, C., & Farré, E. M. (2018). A toolkit for Nannochloropsis oceanica CCMP1779 enables gene stacking and genetic engineering of the eicosapentaenoic acid pathway for enhanced long-chain polyunsaturated fatty acid production. Plant Biotechnology Journal, 16(1), 298–309. https://doi.org/10.1111/pbi.12772

Gee, C. W., & Niyogi, K. K. (2017). The carbonic anhydrase CAH1 is an essential component of the carbon-concentrating mechanism in Nannochloropsis oceanica. Proceedings of the National Academy of Sciences, 114(17), 4537–4542. https://doi.org/10.1073/pnas.1700139114

Gschloessl, B., Guermeur, Y., & Cock, J. M. (2008). HECTAR: A method to predict subcellular targeting in heterokonts. BMC Bioinformatics, 9(1), 393. https://doi.org/10.1186/1471-2105-9-393