Matt Gethers/20.310 Term Paper

From OpenWetWare
Jump to navigationJump to search

20.310 Term Paper

Sickle Cell Anemia

Treatments exist for preventive and palliative treatment of sickle cell episodes, but no treatment has yet been developed to mitigate the effects of an attack once it has started. We need a way of dealing with Hbs fibers once they have polymerized. We feel we can develop a treatment for an ongoing attack by addressing the biomechanical basis of the pathology.

  1. Galkin O, Pan W, Filobelo L, Hirsch RE, Nagel RL, and Vekilov PG. Two-step mechanism of homogeneous nucleation of sickle cell hemoglobin polymers. Biophys J. 2007 Aug 1;93(3):902-13. DOI:10.1529/biophysj.106.103705 | PubMed ID:17449671 | HubMed [Galkin]
  2. Carragher B, Bluemke DA, Gabriel B, Potel MJ, and Josephs R. Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers. J Mol Biol. 1988 Jan 20;199(2):315-31. DOI:10.1016/0022-2836(88)90316-6 | PubMed ID:3351926 | HubMed [Carragher]
  3. Bluemke DA, Carragher B, Potel MJ, and Josephs R. Structural analysis of polymers of sickle cell hemoglobin. II. Sickle hemoglobin macrofibers. J Mol Biol. 1988 Jan 20;199(2):333-48. DOI:10.1016/0022-2836(88)90317-8 | PubMed ID:3351927 | HubMed [Carragher2]
  4. Carragher B, Bluemke DA, Becker M, McDade WA, Potel MJ, and Josephs R. Structural analysis of polymers of sickle cell hemoglobin. III. Fibers within fascicles. J Mol Biol. 1988 Jan 20;199(2):383-8. DOI:10.1016/0022-2836(88)90322-1 | PubMed ID:3351930 | HubMed [Carragher3]
  5. Jones CW, Wang JC, Ferrone FA, Briehl RW, and Turner MS. Interactions between sickle hemoglobin fibers. Faraday Discuss. 2003;123:221-36; discussion 303-22, 419-21. DOI:10.1039/b207388a | PubMed ID:12638863 | HubMed [Turner]
  6. Wang JC, Turner MS, Agarwal G, Kwong S, Josephs R, Ferrone FA, and Briehl RW. Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths. J Mol Biol. 2002 Jan 25;315(4):601-12. DOI:10.1006/jmbi.2001.5130 | PubMed ID:11812133 | HubMed [Wang]

All Medline abstracts: PubMed | HubMed

DNApol processivity as a function of tension in the strand of template DNA


  1. Von Hippel PH, Fairfield FR, and Dolejsi MK. On the processivity of polymerases. Ann N Y Acad Sci. 1994 Jul 29;726:118-31. DOI:10.1111/j.1749-6632.1994.tb52803.x | PubMed ID:8092670 | HubMed [Hippel]
  2. López de Saro FJ, Georgescu RE, and O'Donnell M. A peptide switch regulates DNA polymerase processivity. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14689-94. DOI:10.1073/pnas.2435454100 | PubMed ID:14630952 | HubMed [Lopez]
  3. McClure WR and Chow Y. The kinetics and processivity of nucleic acid polymerases. Methods Enzymol. 1980;64:277-97. DOI:10.1016/s0076-6879(80)64013-0 | PubMed ID:6990186 | HubMed [McClure]
  4. Washington MT, Johnson RE, Prakash S, and Prakash L. Fidelity and processivity of Saccharomyces cerevisiae DNA polymerase eta. J Biol Chem. 1999 Dec 24;274(52):36835-8. DOI:10.1074/jbc.274.52.36835 | PubMed ID:10601233 | HubMed [Washington]
  5. Williams MC, Rouzina I, and Karpel RL. Quantifying DNA-protein interactions by single molecule stretching. Methods Cell Biol. 2008;84:517-40. DOI:10.1016/S0091-679X(07)84017-9 | PubMed ID:17964942 | HubMed [Williams]
  6. Xiang Y, Goodman MF, Beard WA, Wilson SH, and Warshel A. Exploring the role of large conformational changes in the fidelity of DNA polymerase beta. Proteins. 2008 Jan 1;70(1):231-47. DOI:10.1002/prot.21668 | PubMed ID:17671961 | HubMed [Xiang]
  7. Yang J, Zhuang Z, Roccasecca RM, Trakselis MA, and Benkovic SJ. The dynamic processivity of the T4 DNA polymerase during replication. Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8289-94. DOI:10.1073/pnas.0402625101 | PubMed ID:15148377 | HubMed [Yang]

All Medline abstracts: PubMed | HubMed

DNA Stretching

  1. Bustamante C, Smith SB, Liphardt J, and Smith D. Single-molecule studies of DNA mechanics. Curr Opin Struct Biol. 2000 Jun;10(3):279-85. DOI:10.1016/s0959-440x(00)00085-3 | PubMed ID:10851197 | HubMed [Bustamante]
  2. Pope LH, Bennink ML, and Greve J. Optical tweezers stretching of chromatin. J Muscle Res Cell Motil. 2002;23(5-6):397-407. DOI:10.1023/a:1023450204528 | PubMed ID:12785093 | HubMed [Pope]
  3. Wang MD, Yin H, Landick R, Gelles J, and Block SM. Stretching DNA with optical tweezers. Biophys J. 1997 Mar;72(3):1335-46. DOI:10.1016/S0006-3495(97)78780-0 | PubMed ID:9138579 | HubMed [Wang2]

All Medline abstracts: PubMed | HubMed


  1. Gromiha MM. Influence of DNA stiffness in protein-DNA recognition. J Biotechnol. 2005 May 4;117(2):137-45. DOI:10.1016/j.jbiotec.2004.12.016 | PubMed ID:15823403 | HubMed [Grohima]
  2. Hogan ME and Austin RH. Importance of DNA stiffness in protein-DNA binding specificity. Nature. 1987 Sep 17-23;329(6136):263-6. DOI:10.1038/329263a0 | PubMed ID:3627268 | HubMed [Hogan]
  3. Wang MD, Schnitzer MJ, Yin H, Landick R, Gelles J, and Block SM. Force and velocity measured for single molecules of RNA polymerase. Science. 1998 Oct 30;282(5390):902-7. DOI:10.1126/science.282.5390.902 | PubMed ID:9794753 | HubMed [Wang3]
  4. Yin H, Wang MD, Svoboda K, Landick R, Block SM, and Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653-7. DOI:10.1126/science.270.5242.1653 | PubMed ID:7502073 | HubMed [Yin]

All Medline abstracts: PubMed | HubMed

Phage-based Artificial ECM

Synthetic ECM References

Development of biocompatible synthetic extracellular matrices for tissue engineering

Byung-Soo Kima and David J. Mooneya, b, doi:10.1016/S0167-7799(98)01191-3

Static and dynamic mechanical properties of extracellular matrix synthesized by cultured chondrocytes

Shogo Miyata a, Corresponding Author Contact Information, E-mail The Corresponding Author, Katsuko S. Furukawa a, Takashi Ushida a, Yasuo Nitta a and Tetsuya Tateishi b doi:10.1016/j.msec.2003.11.007

Stability of hydrogels used in cell encapsulation: An in vitro comparison of alginate and agarose Molly S. Shoichet *, Rebecca H. Li, Melissa L. White, Shelley R. Winn

Transport characterization of hydrogel matrices for cell encapsulation Biotechnology and Bioengineering Volume 50, Issue 4, Date: 20 May 1996, Pages: 365-373 Rebecca H. Li, David H. Altreuter, Frank T. Gentile

26. V.C. Mow, S.C. Kuei, W.M. Lai and C.G. Armstrong. J. Biomech. Eng. 102 (1980), pp. 73–84. View Record in Scopus | Cited By in Scopus (637)

27. C.G. Armstrong, W.M. Lai and V.C. Mow. J. Biomech. Eng. 106 (1984), pp. 165–173. View Record in Scopus | Cited By in Scopus (147)

  • Combinatorial and high-throughput measurements of the modulus of thin polymer films

Rev. Sci. Instrum. 76, 062207 (2005); DOI:10.1063/1.1906085 Published 18 May 2005

  • High-throughput mechanical characterization of free-standing polymer films

Rev. Sci. Instrum. 76, 062214 (2005); DOI:10.1063/1.1926967 Published 20 May 2005

  • Nanomechanical property screening of combinatorial thin-film libraries by nanoindentation

OL Warren, TJ Wyrobek - Measurement Science and Technology, 2005 -

  • Techniques and Instrumentation for Combinatorial and High-Throughput Polymer Research: Recent Developments

Stefan Schmatloch, Ulrich S. Schubert *

  • Microrheology as a tool for high-throughput screening V. Breedveld1 and D. J. Pine
  • Multi-sample Couette viscometer for

polymer formulations∗ Howard J Walls1,3, Robert F Berg2 and Eric J Amis1

  • Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation

Seung Min Hana, Corresponding Author Contact Information, E-mail The Corresponding Author, R. Shaha, R. Banerjeeb, G.B. Viswanathanb, B.M. Clemensa and W.D. Nixa

  • Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur

Philippe K. ZyssetCorresponding Author Contact Information, E-mail The Corresponding Author, X. Edward Guo, C. Edward Hoffler, Kristin E. Moore and Steven A. Goldstein

  • Characterization of viscoelastic properties of polymeric materials through nanoindentation G. M. Odegard1 Contact Information, T. S. Gates2 and H. M. Herring2
  • Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix

Michael D. Buschmann 1, Yehezkiel A. Gluzband 1, Dr. Alan J. Grodzinsky 1 *, James H. Kimura 2, Ernst B. Hunziker 3

  • Streaming potentials during the confined compression creep test of normal and proteoglycan-depleted cartilage Albert C. Chen2, 1, Tara T. Nguyen2, 1 and Robert L. Sah2, 1
  • Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression

A. C. Chen, W. C. Bae, R. M. Schinagl and R. L. SahCorresponding Author Contact Information, E-mail The Corresponding Author

  1. Akizuki S, Mow VC, Müller F, Pita JC, Howell DS, and Manicourt DH. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus. J Orthop Res. 1986;4(4):379-92. DOI:10.1002/jor.1100040401 | PubMed ID:3783297 | HubMed [Akizuki]
  2. Gildner CD, Lerner AL, and Hocking DC. Fibronectin matrix polymerization increases tensile strength of model tissue. Am J Physiol Heart Circ Physiol. 2004 Jul;287(1):H46-53. DOI:10.1152/ajpheart.00859.2003 | PubMed ID:15001442 | HubMed [Gildner]
  3. Hsu S, Jamieson AM, and Blackwell J. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system. Biorheology. 1994 Jan-Feb;31(1):21-36. DOI:10.3233/bir-1994-31103 | PubMed ID:8173042 | HubMed [Hsu]
  4. Krishnan L, Weiss JA, Wessman MD, and Hoying JB. Design and application of a test system for viscoelastic characterization of collagen gels. Tissue Eng. 2004 Jan-Feb;10(1-2):241-52. DOI:10.1089/107632704322791880 | PubMed ID:15009949 | HubMed [Krishnan]
  5. Mow VC, Kuei SC, Lai WM, and Armstrong CG. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng. 1980 Feb;102(1):73-84. DOI:10.1115/1.3138202 | PubMed ID:7382457 | HubMed [Mow]
  6. Oberhauser AF, Marszalek PE, Erickson HP, and Fernandez JM. The molecular elasticity of the extracellular matrix protein tenascin. Nature. 1998 May 14;393(6681):181-5. DOI:10.1038/30270 | PubMed ID:9603523 | HubMed [Oberhauser]
  7. Parekh A and Velegol D. Collagen gel anisotropy measured by 2-D laser trap microrheometry. Ann Biomed Eng. 2007 Jul;35(7):1231-46. DOI:10.1007/s10439-007-9273-2 | PubMed ID:17380393 | HubMed [Parekh]
  8. Pryse KM, Nekouzadeh A, Genin GM, Elson EL, and Zahalak GI. Incremental mechanics of collagen gels: new experiments and a new viscoelastic model. Ann Biomed Eng. 2003 Nov;31(10):1287-96. DOI:10.1114/1.1615571 | PubMed ID:14649502 | HubMed [Pryse]
  9. Saddiq ZA, Barbenel JC, and Grant MH. The mechanical strength of collagen gels containing glycosaminoglycans and populated with fibroblasts. J Biomed Mater Res A. 2009 Jun;89(3):697-706. DOI:10.1002/jbm.a.32007 | PubMed ID:18442115 | HubMed [Saddiq]
  10. Wu CC, Ding SJ, Wang YH, Tang MJ, and Chang HC. Mechanical properties of collagen gels derived from rats of different ages. J Biomater Sci Polym Ed. 2005;16(10):1261-75. DOI:10.1163/156856205774269494 | PubMed ID:16268252 | HubMed [Wu]

All Medline abstracts: PubMed | HubMed