Kofuji:Publications

From OpenWetWare

Banner2-kofuji.png


Home        Contact        Internal        Lab Members        Publications        Research        Courses       


  1. Tang X, Schmidt TM, Perez-Leighton CE, and Kofuji P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience. 2010 Mar 17;166(2):397-407. DOI:10.1016/j.neuroscience.2010.01.005 | PubMed ID:20074622 | HubMed [Tang-Neurosc-2010]
  2. Tang X, Taniguchi K, and Kofuji P. Heterogeneity of Kir4.1 channel expression in glia revealed by mouse transgenesis. Glia. 2009 Dec;57(16):1706-15. DOI:10.1002/glia.20882 | PubMed ID:19382212 | HubMed [Tang-Glia-2009]
  3. Schmidt TM and Kofuji P. Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci. 2009 Jan 14;29(2):476-82. DOI:10.1523/JNEUROSCI.4117-08.2009 | PubMed ID:19144848 | HubMed [Schmidt-JNeurosci-2009]
  4. Schmidt TM, Taniguchi K, and Kofuji P. Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol. 2008 Jul;100(1):371-84. DOI:10.1152/jn.00062.2008 | PubMed ID:18480363 | HubMed [Schmidt-JNeurophysiol-2008]
  5. Ma H, Lesné S, Kotilinek L, Steidl-Nichols JV, Sherman M, Younkin L, Younkin S, Forster C, Sergeant N, Delacourte A, Vassar R, Citron M, Kofuji P, Boland LM, and Ashe KH. Involvement of beta-site APP cleaving enzyme 1 (BACE1) in amyloid precursor protein-mediated enhancement of memory and activity-dependent synaptic plasticity. Proc Natl Acad Sci U S A. 2007 May 8;104(19):8167-72. DOI:10.1073/pnas.0609521104 | PubMed ID:17470798 | HubMed [Ma-PNAS-2007]
  6. Metea MR, Kofuji P, and Newman EA. Neurovascular coupling is not mediated by potassium siphoning from glial cells. J Neurosci. 2007 Mar 7;27(10):2468-71. PubMed ID:17344384 | HubMed [Metea-JNeurosc-2007]
  7. Connors NC and Kofuji P. Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia. 2006 Jan 15;53(2):124-31. DOI:10.1002/glia.20271 | PubMed ID:16206160 | HubMed [Connors-Glia-2006]
  8. Clark JP 3rd, Sampair CS, Kofuji P, Nath A, and Ding JM. HIV protein, transactivator of transcription, alters circadian rhythms through the light entrainment pathway. Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R656-62. DOI:10.1152/ajpregu.00179.2005 | PubMed ID:15860648 | HubMed [Clark_AJP-2005]
  9. Kofuji P and Newman EA. Potassium buffering in the central nervous system. Neuroscience. 2004;129(4):1045-56. DOI:10.1016/j.neuroscience.2004.06.008 | PubMed ID:15561419 | HubMed [Kofuji-Neuroscience-2004]
  10. Wu J, Marmorstein AD, Kofuji P, and Peachey NS. Contribution of Kir4.1 to the mouse electroretinogram. Mol Vis. 2004 Sep 1;10:650-4. PubMed ID:15359216 | HubMed [Wu-MolVis-2004]
  11. Connors NC, Adams ME, Froehner SC, and Kofuji P. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem. 2004 Jul 2;279(27):28387-92. DOI:10.1074/jbc.M402604200 | PubMed ID:15102837 | HubMed [Connors-JBC-2004]
  12. Kofuji P and Connors NC. Molecular substrates of potassium spatial buffering in glial cells. Mol Neurobiol. 2003 Oct;28(2):195-208. DOI:10.1385/MN:28:2:195 | PubMed ID:14576456 | HubMed [Kofuji-MolNeurobiol-2003]
  13. Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, and Neusch C. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hear Res. 2003 Mar;177(1-2):71-80. PubMed ID:12618319 | HubMed [Rozengurt-HearRes-2003]
  14. Zahs KR, Kofuji P, Meier C, and Dermietzel R. Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol. 2003 Jan 20;455(4):531-46. DOI:10.1002/cne.10524 | PubMed ID:12508325 | HubMed [Zahs-JCN-2003]
  15. Kofuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Veh RW, Bringmann A, and Reichenbach A. Kir potassium channel subunit expression in retinal glial cells: implications for spatial potassium buffering. Glia. 2002 Sep;39(3):292-303. DOI:10.1002/glia.10112 | PubMed ID:12203395 | HubMed [Kofuji-Glia-2002]
  16. Connors NC and Kofuji P. Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci. 2002 Jun 1;22(11):4321-7. DOI:20026510 | PubMed ID:12040037 | HubMed [Connors-JNeurosc-2002]
  17. Marcus DC, Wu T, Wangemann P, and Kofuji P. KCNJ10 (Kir4.1) potassium channel knockout abolishes endocochlear potential. Am J Physiol Cell Physiol. 2002 Feb;282(2):C403-7. DOI:10.1152/ajpcell.00312.2001 | PubMed ID:11788352 | HubMed [Marcus-AJP-2002]
  18. Neusch C, Rozengurt N, Jacobs RE, Lester HA, and Kofuji P. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J Neurosci. 2001 Aug 1;21(15):5429-38. PubMed ID:11466414 | HubMed [Neusch-JNeurosc-2001]
  19. Labarca C, Schwarz J, Deshpande P, Schwarz S, Nowak MW, Fonck C, Nashmi R, Kofuji P, Dang H, Shi W, Fidan M, Khakh BS, Chen Z, Bowers BJ, Boulter J, Wehner JM, and Lester HA. Point mutant mice with hypersensitive alpha 4 nicotinic receptors show dopaminergic deficits and increased anxiety. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2786-91. DOI:10.1073/pnas.041582598 | PubMed ID:11226318 | HubMed [Labarca-PNAS-2001]
  20. Kofuji P, Ceelen P, Zahs KR, Surbeck LW, Lester HA, and Newman EA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina. J Neurosci. 2000 Aug 1;20(15):5733-40. PubMed ID:10908613 | HubMed [Kofuji-JNeurosc-2000]
  21. Egger M, Ruknudin A, Lipp P, Kofuji P, Lederer WJ, Schulze DH, and Niggli E. Functional expression of the human cardiac Na+/Ca2+ exchanger in Sf9 cells: rapid and specific Ni2+ transport. Cell Calcium. 1999 Jan;25(1):9-17. DOI:10.1054/ceca.1998.0002 | PubMed ID:10191956 | HubMed [Egger-CellCalcium-1999]
  22. Wang JB, Liu ZF, Kofuji P, and Burt DR. The GABA(A) receptor gamma1-subunit in seizure prone (DBA/2) and resistant (C57BL/6) mice. Brain Res Bull. 1998;45(4):421-5. PubMed ID:9527017 | HubMed [Wang-BrainResBul-1998]
  23. Doupnik CA, Davidson N, Lester HA, and Kofuji P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10461-6. PubMed ID:9294233 | HubMed [Doupnik-PNAS-1997]
  24. Ruknudin A, Valdivia C, Kofuji P, Lederer WJ, and Schulze DH. Na+/Ca2+ exchanger in Drosophila: cloning, expression, and transport differences. Am J Physiol. 1997 Jul;273(1 Pt 1):C257-65. DOI:10.1152/ajpcell.1997.273.1.C257 | PubMed ID:9252464 | HubMed [RuknudinAJP-1997]
  25. Silverman SK, Kofuji P, Dougherty DA, Davidson N, and Lester HA. A regenerative link in the ionic fluxes through the weaver potassium channel underlies the pathophysiology of the mutation. Proc Natl Acad Sci U S A. 1996 Dec 24;93(26):15429-34. PubMed ID:8986828 | HubMed [Silverman-PNAS-1996]
  26. Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, and Hatten ME. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron. 1996 May;16(5):941-52. PubMed ID:8630252 | HubMed [Kofuji-Neuron-1992]
  27. Schulze DH, Kofuji P, Valdivia C, He S, Luo S, Ruknudin A, Wisel S, Kirby MS, duBell W, and Lederer WJ. Alternative splicing of the Na(+)-Ca2+ exchanger gene, NCX1. Ann N Y Acad Sci. 1996 Apr 15;779:46-57. PubMed ID:8659862 | HubMed [Lederer-AnnNYAcadASci-1996]
  28. Kofuji P, Doupnik CA, Davidson N, and Lester HA. A unique P-region residue is required for slow voltage-dependent gating of a G protein-activated inward rectifier K+ channel expressed in Xenopus oocytes. J Physiol. 1996 Feb 1;490 ( Pt 3):633-45. PubMed ID:8683463 | HubMed [Kofuji-JPhysiol-1996]
  29. Kofuji P, Davidson N, and Lester HA. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6542-6. PubMed ID:7604029 | HubMed [Kofuji-PNAS-1995]
  30. Doupnik CA, Lim NF, Kofuji P, Davidson N, and Lester HA. Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel. J Gen Physiol. 1995 Jul;106(1):1-23. PubMed ID:7494135 | HubMed [Doupnik-JGEP-1995]
  31. Kamatchi GL, Kofuji P, Wang JB, Fernando JC, Liu Z, Mathura JR Jr, and Burt DR. GABAA receptor beta 1, beta 2, and beta 3 subunits: comparisons in DBA/2J and C57BL/6J mice. Biochim Biophys Acta. 1995 Mar 14;1261(1):134-42. PubMed ID:7893750 | HubMed [Kamatchi-BBA-1995]
  32. Kofuji P, Lederer WJ, and Schulze DH. Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem. 1994 Feb 18;269(7):5145-9. PubMed ID:8106495 | HubMed [Kofuji-JBC-1994]
  33. Schulze D, Kofuji P, Hadley R, Kirby MS, Kieval RS, Doering A, Niggli E, and Lederer WJ. Sodium/calcium exchanger in heart muscle: molecular biology, cellular function, and its special role in excitation-contraction coupling. Cardiovasc Res. 1993 Oct;27(10):1726-34. PubMed ID:8275517 | HubMed [Schulze-CardioRes-1993]
  34. Tubiana M. [Human radiation leukemogenesis]. Schweiz Med Wochenschr. 1978 Oct 14;108(41):1563-8. PubMed ID:694482 | HubMed [Kofuji-AJP-1993]
  35. McDaniel LD, Lederer WJ, Kofuji P, Schulze DH, Kieval R, and Schultz RA. Mapping of the human cardiac Na+/Ca2+ exchanger gene (NCX1) by fluorescent in situ hybridization to chromosome region 2p22-->p23. Cytogenet Cell Genet. 1993;63(3):192-3. DOI:10.1159/000133532 | PubMed ID:8485996 | HubMed [McDaniel-CytogentCell-1993]
  36. Kofuji P, Hadley RW, Kieval RS, Lederer WJ, and Schulze DH. Expression of the Na-Ca exchanger in diverse tissues: a study using the cloned human cardiac Na-Ca exchanger. Am J Physiol. 1992 Dec;263(6 Pt 1):C1241-9. DOI:10.1152/ajpcell.1992.263.6.C1241 | PubMed ID:1476165 | HubMed [Kofuji-AJP-1992]
  37. Wang JB, Kofuji P, and Burt DR. Strain comparisons and developmental profile of the delta subunit of the murine GABAA receptor. Brain Res Bull. 1992 Jul;29(1):119-23. PubMed ID:1324097 | HubMed [Wang-BrainResBul1-1992]
  38. Wang JB, Kofuji P, Fernando JC, Moss SJ, Huganir RL, and Burt DR. The alpha 1, alpha 2, and alpha 3 subunits of GABAA receptors: comparison in seizure-prone and -resistant mice and during development. J Mol Neurosci. 1992;3(4):177-84. PubMed ID:1356407 | HubMed [Wang-JMolNeuros-1992]
  39. Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, and Sikela JM. Ethanol sensitivity of the GABAA receptor expressed in Xenopus oocytes requires 8 amino acids contained in the gamma 2L subunit. Neuron. 1991 Jul;7(1):27-33. PubMed ID:1712603 | HubMed [Wafford-Neuron-1991]
  40. Moss SJ, Ravindran A, Mei L, Wang JB, Kofuji P, Huganir RL, and Burt DR. Characterization of recombinant GABAA receptors produced in transfected cells from murine alpha 1, beta 1, and gamma 2 subunit cDNAs. Neurosci Lett. 1991 Feb 25;123(2):265-8. PubMed ID:1851269 | HubMed [Moss-NeurosLet-1991]
  41. Kofuji P, Wang JB, Moss SJ, Huganir RL, and Burt DR. Generation of two forms of the gamma-aminobutyric acidA receptor gamma 2-subunit in mice by alternative splicing. J Neurochem. 1991 Feb;56(2):713-5. PubMed ID:1846404 | HubMed [Kofuji-JNeurochem-1991]
  42. Kofuji P, Aracava Y, Swanson KL, Aronstam RS, Rapoport H, and Albuquerque EX. Activation and blockade of the acetylcholine receptor-ion channel by the agonists (+)-anatoxin-a, the N-methyl derivative and the enantiomer. J Pharmacol Exp Ther. 1990 Feb;252(2):517-25. PubMed ID:1690292 | HubMed [Kofuji-JPET-1990]
All Medline abstracts: PubMed | HubMed