IGEM:Imperial/2010/Variables1
<html> <body style="background-color:FFFFCC">
Constants for the Output Amplification Model
</html>
<html>
| Type of Constant | Derivation of Value |
| TEV Enzyme Dynamics | Enzymatic Reaction: E+S ↔ ES → E+P
We know that Km = (kcat + k2)/k1 Assuming that kcat << k2 << k1, we can rewrite Km ≈ k2/k1
|
| Degradation rate (common for all) | Assumption: To be approximated by cell division (dilution of media) as none of the proteins are involved in any active degradation pathways
Growth rate, gr (divisions/h): 0.53 ≤ gr ≤ 2.18 <a href="http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235685/pdf/jbacter00326-0019.pdf">[2]</a>
|
| Production rate (TEV and Dioxygenase) | We had difficulties finding values of the production rate in the literature and we hope to be able to perform experiments to obtain those values (for TEV protease and catechol 2,3-dioxygenase). Before any values can be obtained from the Lab, we suggest very simplistic approach for estimating production rates.
LacY production = 100 molecules/min<a href="http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100738&ver=0&hlid=29205">[3]</a> (417 Amino Acids<a href="http://www.uniprot.org/uniprot/P02920">[4]</a>)
|
| Kinetic Parameters of Dioxygenase | Initial velocity of the enzymatic reaction was investigated at pH 7.5 and 30 °C.
|
| Dimensions of B.sub cell | Dimensions of B.sub (cylinder/rod shape) in rich media:
|
| Production Rate of split TEV | Assuming that both parts of split TEV are half the size of the whole TEV (3054/2=1527 AA).
|
| Relevant concentrations of Catechol | We have catechol in the lab in powder form so we are only limited by it's solubility.
|
</html>
<html>
References
- Kapust, R. et al (2001) Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering. [Online] 14(12), 993-1000. Available from: http://peds.oxfordjournals.org/content/14/12/993.full.pdf+html [Accessed 20th August 2010]
- Sargent, M. (1975) Control of Cell Length in Bacillus subtilis. Journal of Bacteriology. [Online] 123(1), 7-19. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC235685/pdf/jbacter00326-0019.pdf [Accessed 20th August 2010]
- Milo, R., Jorgensen, P. & Springer, M. (2007) BioNumbers. [Online] Available from: http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100738&ver=0&hlid=29205 [Accesed 25th August 2010]
- UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P02920 [Accessed 24th August 2010]
- Milo, R., Jorgensen, P. & Springer, M. (2007) BioNumbers. [Online] Available from: http://bionumbers.hms.harvard.edu/bionumber.aspx?s=y&id=100737&ver=0&hlid=29206 [Accesed 25th August 2010]
- UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P00722 [Accessed 24th August 2010]
- UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P04517 [Accessed 24th August 2010]
- UniProt Consortium (2002-2010) UniProt. [Online] Available from: http://www.uniprot.org/uniprot/P54721#section_x-ref [Accessed 24th August 2010]
- Wei, J. et al (2009) Rational Design of Catechol-2, 3-dioxygenase for Improving the Enzyme Characteristics. Appl Biochem Biotechnol. [Online] 162, 116-126. Available from: http://www.springerlink.com/content/e3718758m5052214/fulltext.pdf [Accessed 25th August 2010]
</body> </html>