Biomod/2014/results

From OpenWetWare
Jump to: navigation, search

<html>

<head>
 <title> Mainpage </title>
  <style>
    body{
    align: left;
    width: 1200px;
    height: auto;
    margin: 0 auto;
    background-color:#be1e3c;
    border:#be1e3c solid;
    }
    #goTopBtn {POSITION: fixed;TEXT-ALIGN: center;LINE-HEIGHT: 30px;WIDTH: 100px;BOTTOM: 35px;HEIGHT: 100px;FONT-SIZE: 12px;RIGHT: 30px;}
    #content{margin:0;padding:0;border:0px;}
      /*hidden section*/
      .firstHeading{display:none;}
      #sidebar-main{display:none;}
      #p-cactions{display:none;}
      #p-personal{display:none;}
   </style>
</head>
<body>
 <center>
  
  <table align="center" border="0">
   <colgroup  span="4"></colgroup>
    <tr>
     <th>
       <a href="http://www.tu-braunschweig.de/index.html"><img src="http://openwetware.org/images/thumb/2/27/Nanoscooter_TUBS-siegel.jpg/800px-Nanoscooter_TUBS-siegel.jpg" width="383" height="142" alt="Logo TU Braunschweig"></a>    
     </th>
     <th>
      <img src="http://openwetware.org/images/thumb/c/c3/Nanoscooter_Gruppenfoto-Banner.jpg/800px-Nanoscooter_Gruppenfoto-Banner.jpg"
       width="463" height="142"
       alt="our group"
       title="our group (Nanoscooter) for Biomod competition">
     </th>
     <th><img src="http://openwetware.org/images/2/24/Nanoscooter.jpg"
        width="165" height="142" alt="Logo Nanoscooter">  </th>


  </table>


<h1> Team Nanoscooter Braunschweig </h1>

<table border="0">

  <colgroup width="158" span="6"></colgroup>
   <tr>
    <th bgcolor="#be1e3c"><center><font size="+1"><a href="Braunschweig"><span style="color:white">Home</span></a></font></center></th>
    <th bgcolor="#be1e3c"><center><font size="+1"><a href="Team"><span style="color:white">Team</span></a></font></center></th>
    <th bgcolor="#be1e3c"><center><font size="+1"><a href="idea"><span style="color:white">Project idea</span></a></font></center></th>
    <th bgcolor="white"><center><font size="+1"><a href="results"><span style="color:#be1e3c">Results</span></a></font></center></th>     
    <th bgcolor="#be1e3c"><center><font size="+1"><a href="perspectives"><span style="color:white">Perspectives</span></a></font></center></th>
   
    <th bgcolor="#be1e3c"><center><font size="+1"><a href="Sponsoren"><span style="color:white">Sponsoring</span></a></font></center></th>
   </tr>

</table>

<table cellpadding="40">

  <tr>
   <td><font size="+2"><u>Results: Building the world´s smallest car</u></font> 

<p align="justify"> <br> <p align="justify"; style="line-height:2em"><font size="3pt"> Although there is still a long way to a nanoscale factory with self-assembling nanorobots, our Nanoscooter project reached most of its goals! Eventually, it could be a first step for the realization of an autonomous nanoscale factory. <br><br> Coming back to the stopovers assigned, we conclude that our project was successful in almost every aspect: <br>


<table cellpadding="30"> <colgroup width="100"></colgroup> <tr> <td valign="top"> <img src="http://openwetware.org/images/thumb/1/12/Gr%C3%BCner_Haken.png/602px-Gr%C3%BCner_Haken.png" width="75" height="75" >

</td>

<td>

<p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt">

- <b><a href="Design"><span style="color:">DNA origami design</span></a> and verification:</b><br><align="justify"> The success of the design was verified using  gel electrophoresis and atomic force microscopy (AFM): After optimization of the <a href="Folding"><span style="color:">folding</span></a> conditions, we received a very high yield of correctly folded Nanoscooters as can be seen on the AFM <a href="AFM"><span style="color:">images</span></a>.

<br><br>

<div align="center"><img src="http://www.openwetware.org/images/d/dc/3D-Nanosccoter.png" width="25%" height="25%" >

</div>

<div align="center">Figure 1: 3D Nanosooter Image reconstructed from AFM measurements.</font></i></div>

</td></tr> <td valign="top"> <img src="http://openwetware.org/images/thumb/1/12/Gr%C3%BCner_Haken.png/602px-Gr%C3%BCner_Haken.png" width="75" height="75" > </td> <td>


<p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt">

- <b><a href="Functionalization"><span style="color:">Pt-particle functionalization</span></a> and <a href="Attachement"><span style="color:">attachment</span></a> to the Nanoscooter:</b>

<br> <p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt"> The functionalization of the platinum nanoparticles succeeded and was proofed via dynamic light scattering (DLS) where we received an increase in diameter upon incubation with the thiol-modified oligonucleotides. The tethering of the nanoparticles to the DNA origami was verified via gel electrophoresis: The functionalized DNA origami ran slower than the pure Pt-nanoparticles in our agarose gel, a clear difference was visible.</p> <br><br>


<div align="center"><img src="http://www.openwetware.org/images/thumb/0/0d/Particle-Attachement-Gel21.png/800px-Particle-Attachement-Gel21.png" width="25%" height="25%" >

</div>

<br> <br><i><font size="3 "><div align="center">Figure 2: Gel electrophoresis and DLS-results.</font></i></div>


</tr> <td valign="top"> <img src="http://openwetware.org/images/thumb/e/e0/Roter_Haken.png/602px-Roter_Haken.png" width="75" height="75" > </td> <td>


<p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt">

- <b><a href="Fluorescence"><span style="color:">Fluorescence labeling</span></a>:</b><br><p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt"> The idea of labeling DNA origamis with StreptAvidin coated <a href="Fluorescence"><span style="color:">fluorescent beads</span></a> was successful: Using rectangular DNA origamis labeled with red fluorophores, we could show efficient labeling with the fluorescent beads in a colocalization experiment using multicolor fluorescence widefield microscopy. Although the labeling principle was shown to be successful,   similar colocalization experiments with the Nanoscooter showed that the attachment of fluorescent beads to the Nanoscooter failed. A possible reason might be a steric hinderance:The fluorescent beads have a diameter of about 40 nm; they might be too big to fit into the curved upper part of the origami to bind to the biotin. However, this can easily be solved using longer linkers to the biotin anchors. </p>

<br><br>

<div align="center"><img src="http://www.openwetware.org/images/c/c4/NRO_Kolokalisation.png" width="25%" height="25%">

</div> <br> <br><i><font size="3 "><div align="center">Figure 3: Colocalization on rectangular DNA origamis.</font></i></div>


</td></tr> <td valign="top"> <img src="http://openwetware.org/images/thumb/1/12/Gr%C3%BCner_Haken.png/602px-Gr%C3%BCner_Haken.png" width="75" height="75" > </td> <td>



<p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt">

- <b>Random movement:</b><p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt"> On <a href="AFM"><span style="color:">AFM</span></a> images random diffusion of rectangular DNA origamis on mica surfaces was successfully visualized! The imaging of ‘floating’ DNA origamis via fluorescence microscopy was nearly impossible on our inverse widefield microscope due to optical abberations caused by the mica surface. Further experiments require a water-dipping objective and an upright microscope to avoid disturbance through the mica surface.</p><br><br>

<div align="center"><img src="http://www.openwetware.org/images/thumb/e/ea/Floaten-Abberationen.png/800px-Floaten-Abberationen.png" width="50%" height="50%">

</div> <br> <br><i><font size="3 "><div align="center">Figure 4: Floating rectangular DNA origamis imaged by AFM (left) and MICA-induced abberations in fluorescence microscopy imaging (right).</font></i></div>


</td></tr> <td valign="top"> <img src="http://openwetware.org/images/thumb/e/e0/Roter_Haken.png/602px-Roter_Haken.png" width="75" height="75" > </td> <td>


<p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt">

- <b>Active movement:</b><p id="editor"; align="justify"; style="line-height:2em"><i><font size="3pt"> Strong gas development was observed after adding H<sub>2</sub>O<sub>2</sub> to the Nanoscooter functionalized with Pt-nanoparticles, so we are confident that the engine of the Nanoscooter is working as designed. We further showed that incubation with H<sub>2</sub>O<sub>2</sub> does not have an effect on the integrity of DNA origami. For imaging the movement via fluorescence microscopy, again a water-dipping objective and an upright microscope are necessary as gas development make <a href="AFM"><span style="color:">AFM</span></a>  experiments impossible.<br><br>

<div align="center"><img src="http://www.openwetware.org/images/thumb/7/71/Stability_and_bubbles.png/800px-Stability_and_bubbles.png" width="50%" height="50%">

</div> <br> <br><i><font size="3 "><div align="center">Figure 5: Left: Rectangular origamis without H<sub>2</sub>O<sub>2</sub> (a) and after 4 h incubation in H<sub>2</sub>O<sub>2</sub> (b); Right: Emerging oxygen gas of the H<sub>2</sub>O<sub>2</sub> decomposition.</font></i></div> <br>

</font></p></i><br> </td> </table> </font> <p align="justify"; style="line-height:2em"><font size="3pt"> Summing up, we successfully designed a self-assembling Nanoscooter which can move over mica surfaces powered by Pt-nanoparticles catalyzing the decomposition of hydrogen peroxide. The next challenge will be to use more elaborate imaging conditions to visualize this movement in detail. <br><br> However, even so far we expect that this Nanoscooter drives us one step further to the realization of nanoscale autonomous factories!

<br> </td>

</table> </html>