Biomod/2014/Design
<html>
<head>
<title> Mainpage </title>
<style>
body{
align: left;
width: 1200px;
height: auto;
margin: 0 auto;
background-color:#be1e3c;
border:#be1e3c thin solid;
}
#goTopBtn {POSITION: fixed;TEXT-ALIGN: center;LINE-HEIGHT: 30px;WIDTH: 100px;BOTTOM: 35px;HEIGHT: 100px;FONT-SIZE: 12px;RIGHT: 30px;}
#content{margin:0;padding:0;border:0px;}
/*hidden section*/
.firstHeading{display:none;}
#sidebar-main{display:none;}
#p-cactions{display:none;}
#p-personal{display:none;}
</style>
</head>
<body>
<a href="http://www.tu-braunschweig.de/index.html"><img src="http://openwetware.org/images/thumb/2/27/Nanoscooter_TUBS-siegel.jpg/800px-Nanoscooter_TUBS-siegel.jpg" width="383" height="142" alt="Logo TU Braunschweig"></a> |
<img src="http://openwetware.org/images/thumb/c/c3/Nanoscooter_Gruppenfoto-Banner.jpg/800px-Nanoscooter_Gruppenfoto-Banner.jpg" width="463" height="142" alt="our group" title="our group (Nanoscooter) for Biomod competition"> |
<img src="http://openwetware.org/images/2/24/Nanoscooter.jpg" width="165" height="142" alt="Logo Nanoscooter"> |
|---|
Team Nanoscooter Braunschweig
<style type="text/css"> body { height:500px; } div { }
</style> <body> <a href="Braunschweig"><img src="http://openwetware.org/images/b/bf/Zur%C3%BCckpfeil.png"
width="103" height="88" alt="Back"align="left"></a>
</body> |
DNA Origami Design
DNA is not only a polymer which stores genetic information but also provides the opportunity to build complex structures – so called DNA origami. [1] Each of the four different nucleobases only binds a specific other nucleobase; adenine binds to thymine and guanine to cytosine like it was discovered by Watson and Crick. [2] <img src="http://openwetware.org/images/7/76/Schematic_DNAorigami%28figure1%29.PNG" width="" height="" > Figure 1: Schematic DNA origami.
Based on this technique, we designed our Nanoscooter: <img src="http://openwetware.org/images/f/f6/2DOrigami%28figure2%29.PNG" width="" height="" > Figure 2: Two-dimensional view of the DNA origami (18 nm high on the left site, 12 nm high on the right site, 10 nm high in the middle, 62 nm total length). The structure of the Nanoscooter is carefully chosen to show the best performance on the mica surface: First of all, the front part of the Nanoscooter is elevated in comparison to the rest of the structure. That way, the vehicle has better chances not to be pinned down due to obstacles or surface roughness. Furthermore, the outer dimensions are chosen in a way to maximize the chance of correct orientation on the surface (bottom down). Moreover, the sides of the Nanoscooter are inclined to prevent an unfavorable orientation. <img src="http://openwetware.org/images/c/c1/3DOrigami%28figure3%29.PNG" width="" height="" > Figure 3: 3D model of the Nanoscooter (front view, only scaffold, 7 nm broad peak of the front part). The software CanDo is used to model the stability of our DNA origami structure (Figure 4).[6] <iframe width="420" height="315" src="//www.youtube.com/embed/iuwScsE8dC0" frameborder="0" allowfullscreen></iframe> Figure 4: Model of the Nanoscooter by CanDo. Blue stands for a high stability and red areas indicate higher fluctuations. The platinum nanoparticles are tethered to the back of the DNA origami by base pairing of complementary DNA strands. At the back of the DNA origami several staples (located on helices 27, 91 and 103) are elongated with 15 adenines, which bind the platinum nanoparticles modified with thiol functionalized oligonucleotides consisting of 15 thymines.
|
</body>
</html>