From OpenWetWare
Jump to: navigation, search

Statistics for Microarrays: How to get good data

Author(s): Ernst Wit
Affiliations: The University of Lancaster
Keywords: microarray; statistics; tutorial


Microarray experiments have become a model for how new breakthroughs in high-throughput biotechnologies will call upon computational scientists for help. Data from such experiments are high-dimensional, noisy, but form at the same time a highly structured system, about which other related information (sequence data, gene ontology, proteomic data, metabolic data) is available. Statistically inclined scientists are the type of computational scientist ideally suited to deal with these types of experiment.


In this tutorial, we will touch upon a range of design and computational pre-processing aspects for which experimentalists typically need the help:

  • How to make efficient microarray designs?
  • What is RNA pooling and is it helpful?
  • How to integrate data from multiple scans?
  • How can artefacts be removed before analyzing the data?
  • How to integrate data from multiple experiments?

Workshop Prerequisites

Could all attendees ensure that they come with the following:

  • Laptop computer
  • R installed on the laptop
 R can be downloaded from the following location:
  • Download the following Data Files into a NEW directory
  • Download the following PDF file onto their laptop: