Artificial transcriptional terminators
The goal is to create a series of transcriptional terminators with varying efficiencies. The majority of transcriptional terminators have a G+C rich stem of 7(+/-1)bp and a loop of 4(+/-1) nucleodtides followed by a poly(U) tail. Two common loops are UUCG and GAAA, both of which are known to increase RNA hairpin stability. The sequence GCGGG(G) is a common sequence found on the 3' arm of the stem. [1]
Effects of stem loop sequence on terminator efficiency
Bulges and mismatches in the stem, as well low G+C content of the stem will lower termination efficiency(TE) more than reducing the length of or elimination of the poly(U) tail [2]. The sequences downstream of the poly(U) tail and between the stop codon and the start of the stem loop structure also affect the TE of a terminator, particularly T7Te or T3Te.
- T7Te
Several sources [3] [Chamberlin 79] measured the TE of T7Te at around 90%. However, efficiency for the biobricks part BBa_B0012 [1], also T7Te, is around 30%. T7Te has a very short poly(U) tail and requires the further downstream sequence for efficiecent termination [3], and this further downstream sequence is lacking in BBa_B0012. If the sequence for BBa_B0012 is lengthened to include this downstream segment, then the TE of part should be improved.
Predicting terminator efficiency
It may be possible to predict terminator efficiency using methods from d'Aubenton, in particular, the score d assigned to a possible terminator sequence
d = nt*18.16+Y*96.59-116.87
where nt measures the statistical distribution of the T residues in the non transcribed DNA strand and Y is the free energy per nucleodtide of the stem loop structure.
The score d will give a rough estimate of how efficient a terminator is.
d<0: TE<20%
0<d<30: 20%<TE<70%
d>30: TE>70%
Ideal terminator
- has 6 base stem with 3' sequence of GCGGGG
- 4 base loop, either UUCG or GAAA
- tail containing >8 uridines
- for a biobrick part, flanking regions will be biobrick site
Designed terminators
The score d is calculated as mentioned above. The energy of hairpin formation, delG, is caluclated using UNAFold.
These terminators are designed to be bidirectional. delG reverse is the energy of hairpin formation on the opposite strand.
- Terminator 1:
delG=-12.6 d=62.33 %T>90
delG reverse=-10.2 d=53.09 %T>90
stem loop: CCCCGCTTCGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGAAAAAAAAACCCCGCTTCGGC
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAAAAAAAAACCCCGCCGAAGC
- Terminator 2:
delG=-12.6 d=38.25 %T>90
delG reverse=-10.2 d=23.02 %T=75
stem loop: CCCCGCTTCGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCAAAAAACCCCGCTTCGGC
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGAAAAAACCCCGCCGAAGC
- Terminator 3:
delG=-12.6 d=27.78 %T=80
delG reverse=-10.2 d=11.64 %T=40
stem loop: CCCCGCTTCGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCAAAAACCCCGCTTCGGC
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGAAAAACCCCGCCGAAGC
- Terminator 4:
delG=-12.6 d=16.05 %T=55
delG reverse=-10.2 d=0.91 %T=<20
stem loop: CCCCGCTTCGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGGCCGAAAACCCCGCTTCGGC
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTACGGCAAAACCCCGCCGAAGC
- Terminator 5:
delG=-12.6 d=4.22 %T=25
delG reverse=-10.2 d=-11 %T<10
stem loop: CCCCGCTTCGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCGCAAACCCCGCTTCGGC
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGCGAAACCCCGCCGAAGC
- Terminator 6:
delG=-16.2 d=57.39 %T>90
delG reverse=-18.9 d=66.22 %T>90
stem loop: CCCCGCCCCUGACAGGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGAAAAAAAAACCCCGCCCCTGACAGG
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAAAAAAAAACCCCGCCCTGTCAGGG
- Terminator 7:
delG=-16.2 d=33.32 %T=80
delG reverse=-18.9 d=42.69 %T>90
stem loop: CCCCGCCCCUGACAGGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCAAAAAACCCCGCCCCTGACAGG
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGAAAAAACCCCGCCCTGTCAGGG
- Terminator 8:
delG=-16.2 d=22.84 %T=70
delG reverse=-18.9 d=33.03 %T=80
stem loop: CCCCGCCCCUGACAGGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCAAAAACCCCGCCCCTGACAGG
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGAAAAACCCCGCCCTGTCAGGG
- Terminator 9:
delG=-16.2 d=11.56 %T=40
delG reverse=-18.9 d=22.31 %T=75
stem loop: CCCCGCCCCUGACAGGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCGAAAACCCCGCCCCTGACAGG
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGCAAAACCCCGCCCTGTCAGGG
- Terminator 10:
delG=-16.2 d=-0.72 %T<10
delG reverse=-18.9 d=10.40 %T=40
stem loop: CCCCGCCCCUGACAGGGCGGGG
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCGCAAACCCCGCCCCTGACAGG
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGCGAAACCCCGCCCTGTCAGGG
- Terminator 11: this is not supposed to work. if it does, then something is wrong
delG=-3.3 d=-52.65 %T=0
delG reverse=-0.5 d=-69.56 %T=0
stem loop: TTTTATGAAAATAAAA
primer 1: GTTTCTTCGAATTCGCGGCCGCTTCTAGAGCGCCGCAAATTTTATGAAAAT
primer 2: GTTTCTTCCTGCAGCGGCCGCTACTAGTAGCGGCGAAATTTTATTTTCAT
References
- d'Aubenton Carafa Y, Brody E, and Thermes C. Prediction of rho-independent Escherichia coli transcription terminators. A statistical analysis of their RNA stem-loop structures. J Mol Biol. 1990 Dec 20;216(4):835-58. DOI:10.1016/s0022-2836(99)80005-9 |
- Abe H and Aiba H. Differential contributions of two elements of rho-independent terminator to transcription termination and mRNA stabilization. Biochimie. 1996;78(11-12):1035-42. DOI:10.1016/s0300-9084(97)86727-2 |
- Reynolds R and Chamberlin MJ. Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J Mol Biol. 1992 Mar 5;224(1):53-63. DOI:10.1016/0022-2836(92)90575-5 |
- Brendel V, Hamm GH, and Trifonov EN. Terminators of transcription with RNA polymerase from Escherichia coli: what they look like and how to find them. J Biomol Struct Dyn. 1986 Feb;3(4):705-23. DOI:10.1080/07391102.1986.10508457 |
- Cheng SW, Lynch EC, Leason KR, Court DL, Shapiro BA, and Friedman DI. Functional importance of sequence in the stem-loop of a transcription terminator. Science. 1991 Nov 22;254(5035):1205-7. DOI:10.1126/science.1835546 |
- Christie GE, Farnham PJ, and Platt T. Synthetic sites for transcription termination and a functional comparison with tryptophan operon termination sites in vitro. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4180-4. DOI:10.1073/pnas.78.7.4180 |
- Ermolaeva MD, Khalak HG, White O, Smith HO, and Salzberg SL. Prediction of transcription terminators in bacterial genomes. J Mol Biol. 2000 Aug 4;301(1):27-33. DOI:10.1006/jmbi.2000.3836 |
- Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, and Ecker DJ. Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res. 2001 Sep 1;29(17):3583-94. DOI:10.1093/nar/29.17.3583 |
- Lynn SP, Kasper LM, and Gardner JF. Contributions of RNA secondary structure and length of the thymidine tract to transcription termination at the thr operon attenuator. J Biol Chem. 1988 Jan 5;263(1):472-9.
- Petrillo M, Silvestro G, Di Nocera PP, Boccia A, and Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics. 2006 Jul 4;7:170. DOI:10.1186/1471-2164-7-170 |
- Reynolds R, Bermúdez-Cruz RM, and Chamberlin MJ. Parameters affecting transcription termination by Escherichia coli RNA polymerase. I. Analysis of 13 rho-independent terminators. J Mol Biol. 1992 Mar 5;224(1):31-51. DOI:10.1016/0022-2836(92)90574-4 |
- Unniraman S, Prakash R, and Nagaraja V. Conserved economics of transcription termination in eubacteria. Nucleic Acids Res. 2002 Feb 1;30(3):675-84. DOI:10.1093/nar/30.3.675 |
- Uptain SM and Chamberlin MJ. Escherichia coli RNA polymerase terminates transcription efficiently at rho-independent terminators on single-stranded DNA templates. Proc Natl Acad Sci U S A. 1997 Dec 9;94(25):13548-53. DOI:10.1073/pnas.94.25.13548 |
- von Hippel PH and Yager TD. The elongation-termination decision in transcription. Science. 1992 Feb 14;255(5046):809-12. DOI:10.1126/science.1536005 |
- Wilson KS and von Hippel PH. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J Mol Biol. 1994 Nov 18;244(1):36-51. DOI:10.1006/jmbi.1994.1702 |
- Wilson KS and von Hippel PH. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8793-7. DOI:10.1073/pnas.92.19.8793 |
- Yager TD and von Hippel PH. A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry. 1991 Jan 29;30(4):1097-118. DOI:10.1021/bi00218a032 |
- Gusarov I and Nudler E. The mechanism of intrinsic transcription termination. Mol Cell. 1999 Apr;3(4):495-504. DOI:10.1016/s1097-2765(00)80477-3 |
- de Hoon MJ, Makita Y, Nakai K, and Miyano S. Prediction of transcriptional terminators in Bacillus subtilis and related species. PLoS Comput Biol. 2005 Aug;1(3):e25. DOI:10.1371/journal.pcbi.0010025 |
- Pfleger BF, Pitera DJ, Smolke CD, and Keasling JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat Biotechnol. 2006 Aug;24(8):1027-32. DOI:10.1038/nbt1226 |
- Nudler E and Gottesman ME. Transcription termination and anti-termination in E. coli. Genes Cells. 2002 Aug;7(8):755-68. DOI:10.1046/j.1365-2443.2002.00563.x |