From OpenWetWare
Revision as of 02:27, 17 January 2007 by Abhishektiwari (talk | contribs) (INTERACTOMICS & BIOLOGICAL NETWORKS)
Jump to: navigation, search


Home        Contact        iCODONS        Publications        Research        Projects        Softwares        Links       


PLoS Computational Biology Volume 2 | Issue 12 | DECEMBER 2006

  • Modularity and Dynamics of Cellular Networks


At very first sight I can say that Yuan Qi and Hui Ge has written an excellent review article on the recent advances on analyzing the architecture and dynamics of cellular networks. Using mammalian cell signaling as case studies article also summarize how computational modeling yields insight about cell signaling pathways or how computational analyses of networks shed light on specific biological processes. Yuan and Hui also addressed a series of important questions like

1.What are the characteristics of cellular network structures that distinguish them from randomly generated networks?

2.Are the network structures relevant for biological functions? If so, are they evolutionarily conserved and how do they evolve?

3.Are some topological patterns preferred at certain times or conditions?

Oxford Bioinformatics Volume 22 | Number 17 | 1 September 2006

  • Constructing biological networks through combined literature mining and microarray analysis: a LMMA approach


Network representation of biological entities is very important for understanding biological processes, system organization and interaction between entities. Shao Li et al. integrated both the literatures and microarray gene-expression data, and developed a combined literature mining and microarray analysis (LMMA) approach to construct gene networks of a specific biological system. In the LMMA approach, a global network is first constructed using the literature-based co-occurrence method. It is then refined using microarray data.

This work may be a start towards an Integrated Biological Network representation where different data sets from literature, genomics and proteomics will be used to give precise and useful multidimensional interaction networks.