# 6.021/Notes/2006-11-27

From OpenWetWare

## Ion channels

- Gate model
- α: rate of opening
- β: rate of closing

- Theory of absolute reaction rates (Arrhenius)
- potential energy of open (
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle E_O}**), closed (**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle E_C}**), and intermediate barrier state (**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle E_B}**) -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \alpha=Ae^{(E_C-E_B)/kT}}** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta=Ae^{(E_O-E_B)/kT}}**

- potential energy of open (
- If gate has some charge, the potential energy can be function membrane potential
- If assume simple voltage dependence, get similar looking rates as parameters in Hodgkin-Huxley model
- As gate moves, its charge moves, so have extra
**gating current** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle q_g}**: gating charge -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i_g = \frac{d}{dt}q_g}** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tilde{i}_g = \frac{d}{dt}\tilde{q}_g}** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tilde{q}_g}**is 0 or Q -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tilde{i}_g}**is impulses of amplitude Q up and down - At steady state, average of
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tilde{i}_g = 0}** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle q_g = Qx}** -
**Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i_g = E[\tilde{i}_g] = E[\frac{d}{dt}\tilde{q}_g] = \frac{d}{dt}E[\tilde{q}_g] = \frac{d}{dt}Qx = Q\frac{dx}{dt}}** - To measure gating current, disable the ion channel (ionic current)
- Have to separate out capacitance current which is much larger
- Gating current is non-linear while capacitance current is linear so can sum response to equal step up and step down to cancel out capacitive current and leave gating current