6.021/Notes/2006-09-12
From OpenWetWare
Jump to navigationJump to search
Review
- Fick's first law: [math]\displaystyle{ \phi(x,t)=-D\frac{\partial c(x,t)}{\partial x} }[/math]
- Flux is proportional to the concentration gradient
- Continuity equation: [math]\displaystyle{ -\frac{\partial\phi(x,t)}{\partial x} = \frac{\partial c(x,t)}{\partial t} }[/math]
- A flux gradient leads to change in concentration over time
- Diffusion equation: [math]\displaystyle{ \frac{\partial c(x,t)}{\partial t} = D\frac{\partial^2 c(x,t)}{\partial x^2} }[/math]
- Steady state solution: time-invariant ([math]\displaystyle{ \frac{\partial c}{\partial t}=0, \frac{\partial\phi}{\partial t}=0 }[/math])
- [math]\displaystyle{ \phi(x,t)=\phi_0 }[/math]
- [math]\displaystyle{ c(x,t) = -\frac{\phi_0}{D}X+\alpha }[/math]
- Equilibrium: Zero flux + time invariant
- [math]\displaystyle{ \phi(x,t)=0, C(x,t)= }[/math]constant (uniform distribution)
- Impulse response: Gaussian [math]\displaystyle{ c(x,t)=\frac{n_0}{\sqrt{4\pi Dt}}e^{-x^2/(4Dt)} }[/math]
- [math]\displaystyle{ x^2 \approx Dt }[/math]