OpenWetWare:Getting started

From OpenWetWare

Jump to: navigation, search

What is OpenWetWare?

OpenWetWare is an effort to promote the sharing of information, know-how, and wisdom among researchers and groups who are working in biology & biological engineering. Lots of people are constantly improving OpenWetWare, making frequent changes, all of which are recorded on article histories and recent changes.

The first step, if you haven't done so already, is to set up a user account so you can edit pages.

How can I help?

Click edit to change an article
Click edit to change an article

Don't be afraid to editanyone can edit almost any page, and we encourage you to be bold (but please don't vandalize)! Find something that can be improved, either in content, grammar or formatting, and fix it.

You can't break OpenWetWare. Anything can be fixed or improved later. So go ahead, edit an article and help make OpenWetWare the best information source on the Internet!

Make your first edit right now:

  1. Click Image:EditButton.jpg above
  2. Type a message
  3. Click Image:SavePageButton.jpg to save your writing

...or Image:ShowPreviewButton.jpg to test your changes

Test edits...


A hematopoietic stem cell is a stem cell that is derived from the bone marrow marrow or the blood of a subject. These stem cells are pluripotent and thus have the ability to be transformed into any other type of blood cell or immune cell. Their role within the blood is to keep the body constantly replenished with blood as the blood cells must be replaced every day. There are two different types of hematopoietic stem cells, long term and short term. However it is extremely difficult for researchers to differentiate between the two different types of stem cells once they are removed from the blood or bone marrow. The difference between the two types of cells are that long term can regenerate indefinitely while short term stem cells cannot renew themselves over a long period of time(Toshihisa 2013).

Image:Stem cell.jpg


Hematopoietic stem cell have the potential to be used to influence the immune system in a myriad of ways as well as to influence the production of red blood cells in the body. By better understanding these cells and being able to manipulate these cells, cures for autoimmune diseases and cancers can be possibly found. Furthermore artificial blood can be produced so that those who need blood transfusions may be able to more readily get them.

Current Work

Hematopoietic stem cells can be taken from a donor patient and inserted into a patient with a compromised immune system or bone marrow. This process is called hematopoietic stem cell transplantation, and the donor stem cells are inserted via an IV into the patient. This transplantation method can be used to treat patients who have diseases such as neuroblastoma or Non-Hodgkin Lymphoma. However there are numerous potential side effects including infection as well as Graft-versus-host disease(Regenerative 2006). Another use for hematopoietic stem cells are to use them to induce tolerance in solid organ grafts. By introducing these stem cells into the organ that’s been transplanted, the autoimmune response to that new organ is reduced or eliminated. This effect was examined in newborn mice, where transplanted organs were accepted by the host mice’s body for the remainder of its life and no autoimmune response to the new organ observed (Hematopoietic 2011). The reason for the acceptance of the donated organ is due to a lower negative T cell response, essentially meaning that T cells won’t recognize the new organ as an invader and attack it(Regenerative 2006).


Future Work/Complications

Research has been done on whether or not hematopoietic stem cells can be used to heal other parts of the body rather than blood or bone marrow. There is evidence to suggest that hematopoietic stem cells tend to gravitate towards injured areas of the body and heal damaged tissues there(Hematopoietic 2011). There is also the potential of these stem cells being turned other types of cells such as bone cells or brain cells as they are pluripotent cell. However the viability of this method is still in question as the research into this is still fairly young and as yet unexplored although the potential is still there. One of the key obstacles to further work in this area is the limited supply of hematopoietic stem cells as well as the very large numbers needed by patients for each treatment. This is due to the host’s body tendency to attack the donated cells. Another obstacle of these stem cells is the inability of scientists to be able to differentiate between long term and short term hematopoietic stem cells, as only the long term stem cells are useful for growing cultures. These long term cells are also fairly rare, only occurring 1:10,000 normal red blood cells(Hematopoietic 2011).


==Toshihisa Tsuruta (2013). Recent Advances in Hematopoietic Stem Cell Gene Therapy, Innovations in Stem Cell Transplantation, Prof. Taner Demirer (Ed.), ISBN: 978-953-51-0980-8, InTech, DOI: 10.5772/53587. Available from:
==Regenerative Medicine. Department of Health and Human Services. Chapter 2: Bone Marrow (Hematopoietic) Stem Cells. August 2006.
==Hematopoietic Stem Cells . In Stem Cell Information [World Wide Web site]. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2011 [cited Wednesday, January 28, 2015] Available at <>
Personal tools