Harvard:SysBio 204/2014

From OpenWetWare
Jump to navigationJump to search
Systems Biology 204: Biomolecular Engineering and Synthetic Biology 2014

Home        People        Materials        Syllabus        Help        Midterm and Final       

Course overview

  • A course focusing on the rational design, construction, and applications of nucleic acid and protein-based synthetic molecular and cellular machinery and systems. Students are mentored to produce substantial term projects.
  • Intended for graduate students in Systems Biology, Biophysics, Engineering, Biology and related disciplines. No formal prerequisites. Projects are tailored to each student's strengths and interests.
  • Website: http://sb204.net
  • Poster

Midterm and Final

  • There will be two midterms and one final project for this class
    • Policy: strict submission deadline, we encourage you to submit your work the night before
    • Midterm #1 due: October 3rd at noon
    • Midterm #2 due: October 24th at noon
    • Final project due: November 28
    • Method of submission: email TA your slides and presentations
  • Midterm and Final Projects (2013, to be updated)


Logistics

  • Instructors: George Church, William Shih, Pamela Silver, Peng Yin
  • Teaching Fellow: Evan Daugharthy
  • Meeting time: 2:30 - 4:00 PM, Mon/Wed, Fall 2014
  • Location: Room 521, Wyss Institute, 3 Blackfan circle, Boston, 02115
  • First class on Wednesday Sep 3rd.
  • Location: CLSB521
  • No exams
  • Prerequisites: none
  • Grading
    • 20% Participation
    • 40% Midterm projects
    • 40% Final project
  • Harvard course site


Background Info and previous class projects


Example topics for final design project

  • miRNA pattern recognition in eukaryotic cells
  • Directed evolution of chemical sensors
  • Nano-breadboards for probing electron transport in proteins
  • Altered genetic codes and amino acid alphabets
  • Modification of proteins for function in harsh environments
  • Automatable assembly of large synthetic genes and circuits
  • Synthetic biology of stem cells and epigenetic reprogramming pathways
  • Structural re-engineering of adenoviruses
  • Artificial chemotactic swimmers
  • Nonequilibrium networks of nano-machines mimicking dynamic instability in the cytoskeleton
  • Recombinase-based multi-state memory in bacteria
  • Exosome manufacturing
  • Self-assembled solar energy harvester based on bio-inorganic nano-antennae for uv-vis
  • Systematic debugging of DNA labeling chemistries by atomic-resolution TEM imaging of DNA origami
  • Transcriptional activation and repression through rational molecular design
  • Tissue engineering scaffold nano-materials
  • Programmable multistep chemical synthesis by templating on catalytic nanostructures
  • Ultra-sensitive signal processing for synthetic biology
  • Antibody 2.0
  • Synthetic nanostructure - virus conjugates
  • Replication of information in synthetic crystals
  • Cheap large-scale production of protein or DNA-based materials
  • Etc. Etc. Etc.


Recent changes

List of abbreviations:
N
This edit created a new page (also see list of new pages)
m
This is a minor edit
b
This edit was performed by a bot
(±123)
The page size changed by this number of bytes

7 December 2025

     00:06  Hu:Publications 3 changes history +254 [Hugangqing (3×)]
     
00:06 (cur | prev) −27 Hugangqing talk contribs
     
00:02 (cur | prev) +7 Hugangqing talk contribs
     
00:01 (cur | prev) +274 Hugangqing talk contribs

6 December 2025

     23:59  Hu diffhist +111 Hugangqing talk contribs

3 December 2025

     16:47  Hu:Members 5 changes history +502 [Hugangqing (5×)]
     
16:47 (cur | prev) +14 Hugangqing talk contribs
     
16:46 (cur | prev) −184 Hugangqing talk contribs
     
16:46 (cur | prev) +45 Hugangqing talk contribs
     
16:43 (cur | prev) +620 Hugangqing talk contribs
     
16:41 (cur | prev) +7 Hugangqing talk contribs
     16:41 Upload log Hugangqing talk contribs uploaded File:Lauren.jpg (Lauren Keplinger)