From OpenWetWare

Jump to: navigation, search
  • References

(1) Marco, R. (1996): “La investigación biológica espacial en España. Un ejemplo muy especial de la delicada situación que atraviesa en estos momentos la investigación en nuestro país”. Med. Aeroesp. Ambient. 1: 243-248.

(2) Marco, R.; Vernós, I.; González, I.J.; Calleja, M. (1986): "Embryogenesis and Aging of Drosophila melanogaster flown in the Space Shuttle." Naturwisssenschhaften 73: 431-432.

(3) Vernós, I.; González-Jurado, J.; Calleja, M.; Marco, R. (1989):“Microgravity effects on the oogenesis and development of embryos of Drosophila melanogaster laid in the Spaceshuttle during the Biorack experiment (ESA)” Int. J. Dev. Biol. 33: 213-226.

(4) Miquel, J.; Philpott, D.E. (1978): “Effects of weightlessness on development and aging of Drosophila melanogaster”. The Physiologist, Vol. 21: 80.

(5) Marco, R.; González-Jurado, J.; Calleja, M.; Garesse, R.; Maroto, M.; Ramírez, E.; Holgado, M.C.; de Juan E.; Miquel, J. (1992): "Microgravity Effects on Drosophila melanogaster Development and Aging: Comparative Analysis of the Results of the Fly Experiment in the Biokosmos 9 Biosatellite Flight" Adv. Space Res. 12(1): 157-166.

(6) Miquel, J.; Fleming, J. (1984): “A two step hypothesis on the mechanisms of in vitro cell aging: cell differentiation followed by intrinsic mitochondrial mutagenesis” Exp. Gerontol. 19: 31-36

(7) Marco, R.; Benguría, A.; Sánchez, J.; de Juan, E. (1996): "Effects of space environment on Drosophila melanogaster development. Implications of the IML-2 experiment", J. Biotechnol. 47(2-3): 179-189.

(8) Benguría, A.; Grande, E.; de Juan, E.; Ugalde, C.; Miquel, J.; Garesse, R.; Marco, R. (1996): “Microgravity effects on Drosophila melanogaster behavior and aging. Implications of the IML-2 experiment.” J. Biotechnol. 47(2-3): 191-201.

(9) Marco, R.; Díaz, C.; Benguría, A.; Mateos, J.; de Juan, E. (1999): “Drosophila melanogaster, a key arthropod model in the study of the evolutionary long term adaptation of multicellular organism to the space environment.” En: ESA SP-433: 433-440.

(10) Marco, R.; Díaz, C.; Benguría, A.; Mateos, J.; Mas, J.; de Juan, E. (1999): “The role of gravity in the evolutionary emergence of multicellular complexity. The effects of microgravity on arthropod development and aging”. Adv Space Res. 23 (12) 2075-2082.

(11) Kossmehl P, Shakibaei M, Cogoli A, Pickenhahn H, Paul M, Grimm D. Simulated microgravity induces programmed cell death in human thyroid carcinoma cells. J Gravit Physiol. 2002, páginas 295-301.

(12) Uva BM, Masini MA, Sturla M, Tagliafierro G, Strollo F. Microgravity-induced programmed cell death in astrocytes. J Gravit Physiol. 2002 Jul;9(1):P275-281.

(13) B.M. Uva, M.A. Masini, M. Sturla1, F. Bruzzone1, M. Giuliani1, G. Tagliafierro1, and F. Strollo. Microgravity-induced apoptosis in cultured glial cells. . Histochem. 2002. Paginas 209 – 214.

(14) Heide Schatten, Marian L. Lewis, and Amitabha Chakrabarti. Spaceflight and clinorotation cause cytoskeleton and mitoehondria changes and increases in apoptosis in cultured cells. Acta Astronautica Volumen. 49, No. 3-10, pagina 399-418, 2001.

(15) Oana Marcu, Matthew P. Lera, Max E. Sanchez, Edina Levic, Laura A. Higgins, Alena Shmygelska, Thomas F. Fahlen, C Helen Nicho and Sharmila Bhattacharya. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight. Plos One Volumen 6(1); 2011.

(16) Raúl Herranz, Alberto Benguría, David Laván, Irene Lopez-Vidriero, Gilbert Gasset, F. Javier Mediana, Jack J. W. A. Van Loon ans Roberto Marco. "Spaceflight-related suboptimal conditions can accentuate the altered gravity response of Drosophila transcriptome". Molecular Ecology 2010.

(17) Cristiana Griffoni, Serena Di Molfetta, Luca Fantozzi, Cristiana Zanetti, Proto Pippia, Vittorio Tomasi1 and Enzo Spisni. Modification of the protein secreted by endothelial cells during modelled low gravity exposure. J Cell Biochem. 2011. Volumen 112(1):265-72.

(18) Herranz R, Husson D, Villa A, Pastor M, Medina FJ, Marco R. Modifications in basic handling techniques to study the consequences of the Drosophila melanogaster. J. Gravit. Physiol. 2005:1251–1260. Herranz R, Husson D, Villa A, Pastor M, Medina FJ, Marco R. Modifications in basic handling techniques to study the consequences of the Drosophila melanogaster. J. Gravit. Physiol. 2005:1251–1260.

(20) L.J. Leandro, N.J. Szewczyk, A. Benguría, R. Herranz, D. Laván, F.J. Medina, G. Gasset, J. van Loon, C.A. Conley, and R. Marco “Comparative analysis of drosophila melanogaster and Caenorhabditis elegans gene expression experiments in the European Soyuz Flights to the International Space Station” Adv. Space Res. (under second round review) ISSN: 0273-1177.

(21) Herranz , R. , Laván, D.A., Benguria, A., Duque, P., Leandro, L.J., Gasset, G., Medina, F . J. Medina, J. van Loon and R Marco. (2007). The “Gene” Experiment in the Spanish Soyuz Mission to the ISS. effects of the cold transportation step. Microgravity Science and Technology. Volume 19, Numbers 5-6, 196-200, DOI: 10.1007/BF02919481

(22) Herranz R, Laván DA, Medina FJ, van Loon JJ, Marco R (2009) The “Gene” experiment in the Spanish Soyuz Mission to the International Space Station. II Effects of oxygen concentration constrain. Microgravity science and technology, 21, 299-304.

Personal tools