User:Patrick Hampson/Notebook/chem471/2016/08/31

From OpenWetWare
Jump to navigationJump to search

Currently waiting for graphs to analyze

Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

UV-Vis 2016831

  • 0 mM and 0.0625 mM


0 mM Fructose
pH μL of 1 mM HClstock μL of 1 mM NaOHstock μL of 1 M NaOHstock μL of AuCl3stock μL of Fructosestock μL of BSAstock μL of Water
4 500 0 0 374 0 460 3666
5 50 0 0 374 0 460 4116
6 5 0 0 374 0 460 4161
7 0 0 0 374 0 460 4166
8 0 5 0 374 0 460 4161
9 0 50 0 374 0 460 4116
10 0 500 0 374 0 460 3666
11 0 0 5 374 0 460 4161
12 0 0 50 374 0 460 4116


0.0625 mM Fructose
pH μL of 1 mM HClstock μL of 1 mM NaOHstock μL of 1 M NaOHstock μL of AuCl3stock μL of Fructosestock μL of BSAstock μL of Water
4 500 0 0 374 24 460 3642
5 50 0 0 374 24 460 4092
6 5 0 0 374 24 460 4137
7 0 0 0 374 24 460 4142
8 0 5 0 374 24 460 4137
9 0 50 0 374 24 460 4092
10 0 500 0 374 24 460 3642
11 0 0 5 374 24 460 4137
12 0 0 50 374 24 460 4092


UV-Vis Measurement: Gold Concentration=0.25 mM
[Fructose] pH 4 pH 5 pH 6 pH 7 pH 8 pH 9 pH 10 pH 11 pH 12
0 mM X X X X X X X X X
0.0625 mM X X X X X X X X

Protocol

All solutions were prepared by Dr. Hartings

  1. If Necessary
    1. Turn on the instrument (if not already done)
    2. Turn on the computer (if not already done)
    3. Open the UVProbe software
    4. Get the computer talking to the instrument by clicking the "Connect Button"
  2. Set the measurement "Method"
    1. Click the icon, at the top, that is a yellow circle with a green "M"
    2. Set the wavelength endpoints
      1. Typical for our measurements are: 200 nm to 800 nm
    3. Set the spectrum resolution
      1. Typical for our measurements is 1 nm
    4. Set the acquisition speed/quality
      1. Typical for our measurements is Medium
    5. Set the data collection pathway and the name for the file that will contain every spectrum collected
      1. Change the directory to: C:\Users\Chem Lab\DropBox\CHEM471 2016\UV Vis\Year\Month\Date
      2. Set the filename to something descriptive for all of the samples to be collected
  3. Baseline the detector
    1. Option A
      1. Fill the cuvette you will use for the rest of the measurements with the solvent that suspends your analyte
      2. Place the cuvette in the proper holder in the instrument, making sure that light will pass through 2 clear windows
      3. Click "Baseline"
    2. Option B
      1. Don't place a cuvette in the holder at all
        1. Going this route will require you to take a spectrum of your solvent as a blank. You will have to correct all of your subsequent spectra for your solvent's spectrum. This is the best option when there are multiple users on the same instrument during a single day
      2. Click "Baseline"
  4. Collect data
    1. Place a sample in a properly cleaned cuvette
    2. Place the cuvette in the proper holder making sure that light will pass through two transparent cuvette windows
    3. Click "Start"
  5. Saving data
    1. When the spectrum has been acquired and the instrument has reset itself to its "start" position, you can save your data.
    2. Save data in a format readable by the instrument (.spc files)
      1. From the Menu, select "File > Save As"
      2. Give your file a name that is representative of that particular sample (include descriptors for identity, concentration, or any other important variable)
      3. Click "Save"
    3. Save data in a format readable by analysis software on your computer (.txt files)
      1. From the Menu, select "File > Save As"
      2. Change "Save as type" to "Data Print Table"
      3. Your filename from the previous step will be conserved. Only the file extension will change.
      4. Click Save
    4. Repeat as necessary
  6. Shutting down the instrument
    1. Click the "Disconnect" button at the bottom of the screen
    2. Close out of the software (if at the end of the day)
    3. Shut down the computer (if at the end of the day)
  1. Open the "Q Blue Wireless Temperature Controller" by clicking its icon on the desktop
  2. Set the Temperature
    1. Set the Control Status to "On"
    2. Input your desired temperature
      1. Click "Change" for the Target Temperature and type in the temperature you want for the experiment
      2. For most nanoparticle syntheses, the temperature is 80C
  3. Set the stirring
    1. If you need stirring, and have a stir bar in your cuvette, set the stirrer to "On"

Objective

The objective of this laboratory was to measure the concentration of gold nano-particles in solutions. The solutions tested had varying pH and fructose concentration. The purpose of this laboratory was to find which combination of pH and Fructose concentration would yield the highest gold nano-particle concentration.



Notes and Observations

All test solutions were purple tinged with the exception of the 11 pH and 12 pH tubes for both concentrations of Fructose. The 7 pH 0.0625 mM Fructose tube had a pipetting error during preparation, and formed fibers. The fibers were a dark purple color, while the rest of the solution was clear. This tube was not used.


Analysis

0 mM Fructose had a peak absorption at 530 nm 0.0625 mM Fructose had a peak absorption at 531 nm