Biomod/2013/NanoUANL/Enzyme

From OpenWetWare
Revision as of 15:43, 26 October 2013 by Jose R. Aguilar C. (talk | contribs)
Jump to navigationJump to search

<html> <head> <link href='css/left_menu.css' rel='stylesheet' type='text/css'> </head>

<style> .main_cont { float:left; width:150px; background-color:#4d7986; padding:10px; } .menu_top_bg { width:150px; background:url(http://www.cssblog.es/images/menu_top_bg.gif) repeat-x; height:22px; padding-top:8px; font-family:Verdana, Arial, Helvetica, sans-serif; font-size:12px; color:#FFFFFF; font-weight:bold; text-align:center; margin-bottom:1px; } .sub_menu ul { padding:0px; margin:0px; } .sub_menu ul li { font-family:Arial, Helvetica, sans-serif; font-size:11px; color:#FFFFFF; line-height:32px; border-bottom:1px dotted #93bcc3; list-style-type:none; text-indent:8px; } .sub_menu ul li a { text-decoration:none; color:#FFFFFF; } .sub_menu ul li a.selected { background:url(http://www.cssblog.es/images/menu_selected.png) no-repeat; float:left; width:242px; height:32px; } .sub_menu ul li a:hover { background:url(http://www.cssblog.es/images/menu_selected.png) no-repeat; float:left; width:150px; height:30px; } - See more at: http://www.cssblog.es/disenando-un-bonito-menu-vertical-con-css/#sthash.AWv2bSbm.dpuf

  1. pagecontent

{

 float: left;
 width: 620px;
 margin-left: 300px;
 min-height: 400px

} </style>

</html>

http://openwetware.org/images/c/c9/UANL_Banner2.png

<html> <!-- MathJax (LaTeX for the web) --> <script type="text/x-mathjax-config"> MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}}); MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <head> <title></title> </head> <body> <p style="text-align: center;"> <strong><span style="font-size:24px;"><span style="font-family: tahoma,geneva,sans-serif;">&nbsp;&nbsp; ENZYME</span></span></strong></p> <p style="text-align: center;"> &nbsp;</p> <p style="text-align: center;"> <span style="font-size:14px;"><span style="font-family: lucida sans unicode,lucida grande,sans-serif;"><strong><img alt="" src="http://openwetware.org/images/e/e4/UANLEnzyme1.jpg" style="width: 410px; height: 385px;" /></strong></span></span></p> <p style="text-align: justify;"> <span style="font-size:14px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;"><strong>Enzyme</strong></span></span></p> <p style="text-align: justify;"> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">In biological systems, chemical transformations are typically accelerated by enzymes, macromolecules capable of turning one or more compounds into others (substrates and products). The activity is determined greatly by their three-dimensional structure. Most enzymes are proteins, although several catalytic RNA molecules have been identified. They may also need to employ organic and inorganic cofactors for the reaction to occur. The process is based upon the diminishment of the activation energy needed for a reaction, greatly increasing its rate of reaction. The rate enhancement provided by these proteins can be as high as 10^19, while maintaining high substrate specificity.</span></span></p> <p style="text-align: justify;"> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Because of this, reaction rates are millions of times faster than un-catalyzed reactions. Enzymes are not consumed by the reactions that they take part in, and they do not alter the equilibrium. Enzyme activity can be affected by a wide variety of factors. Inhibitors and activators intervene directly in the reaction rate, environmental factors like temperature, pressure, pH and substrate concentration also play a part in these kinetics. For temperature and pH, usually exist a range of values for which the enzyme works better (optimal conditions). The enzyme activity lowers dramatically as you get farther away from this range of values. As for concentration, other kind of relationship is observed. With increasing concentration, enzyme activity increases, until we reach the most optimal performance. Further increase of concentration generally won&rsquo;t have an impact on the enzyme activity.</span></span></p> <p style="text-align: justify;"> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">Being able to determine these conditions allow us to manipulate the enzyme activity, thus achieving greater control over the reaction.</span></span></p> <p style="text-align: justify;"> <span style="font-size:14px;"><strong><span style="font-family: trebuchet ms,helvetica,sans-serif;">Michaelis-Menten kinetics</span></strong></span></p> <p style="text-align: justify;"> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Michaelis-Menten kinetics is one of the oldest models for describing the catalytic activity of enzymes. The reaction cycle is divided into two basic steps: the reversible binding between the enzyme and substrate to form an intermediate complex, and the irreversible catalytic step to generate the product and release the enzyme; in which the first step is affected by the constants k<sub>1</sub> and k<sub>-1</sub>, whereas the irreversible step only takes into account&nbsp; k<sub>2</sub>.</span></span></p> \begin{equation} E + S \leftrightarrow ES \rightarrow E^0 + P \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">The rate of consumption can be expressed by the formation of the ES complex in the following equation:</span></span></p> \begin{equation} \frac{d[ES]}{dt}=k_1[E][S]-k_{-1}[ES]-k_2[ES] \end{equation} <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Using a steady-approximation and rearranging eq. 2 we obtain:</span></span></p> \begin{equation} [ES]= \frac{[E][S]}{K_M+[S]} \end{equation} <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">where &#39;&#39;K<sub>M</sub>&#39;&#39; is the Michaelis constant defined as </span></span></p> \begin{equation} K_M= \frac{k_{-1} + k_2}{k_1} \end{equation} <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">As it was mentioned in the introduction, single-enzyme studies have proven that the &quot;traditional&quot; enzyme kinetics do not apply, and a new approach is needed. Enzyme concentration is meaningless in a single-molecule level, so it is more appropriate to consider the probability &#39;&#39;P<sub>E</sub>(t)&#39;&#39; for the enzyme to find a catalytically active enzyme in a time &#39;&#39;t&#39;&#39; in the process. This is because the reaction is a stochastic event.</span></span></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Therefore, the rate equations of each species are:</span></span></p> \begin{equation} \frac{d[E]}{dt}=-k_1[E][S]+k_{-1}[ES] \end{equation} \begin{equation} \frac{d[ES]}{dt}=k_1[E][S]-(k_{-1}+k_2)[ES] \end{equation} \begin{equation} \frac{d[E^0]}{dt}=\frac{d[P]}{dt}=k_2[ES] \end{equation} </body> <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">where &#39;&#39;t&#39;&#39; is the elapsed time, the initial conditions are [ES]=0 and [E&lt;sup&gt;0&lt;/sup&gt;]=0 at &#39;&#39;t&#39;&#39;=0. To derive the rate equations that describe the corresponding single-molecule Michaelis-Menten kinetics, the concentrations in equations 5-7 are replaced by the probabilities P of finding the single enzyme molecule in the states E, ES, and E&lt;sup&gt;0&lt;/sup&gt; , leading to the equations:</span></span></p> \begin{equation} \frac{dP_E(t)}{dt}=-k_1^0P_E(t)+k_{-1}P_{ES}(t) \end{equation} \begin{equation} \frac{dP_{ES}(t)}{dt}=k_1^0P_E(t)-(k_{-1}+k_2)P_{ES}(t) \end{equation} \begin{equation} \frac{dP_E^0(t)}{dt}=k_2P_{ES}(t) \end{equation} <p> <span style="font-family:trebuchet ms,helvetica,sans-serif;"><span style="font-size: 12px;">These equations must satisfy the conditions &#39;&#39;P<sub>E</sub>&#39;&#39;(0)=1, &#39;&#39;P<sub>ES</sub>&#39;&#39;(0)=0 and &#39;&#39;P<sub>E<sup>0</sup></sub>&#39;&#39;=0 at &#39;&#39;t&#39;&#39;=0 (start of the reaction). Also, &#39;&#39;P<sub>E</sub>&#39;&#39;(t) + &#39;&#39;P<sub>ES</sub>&#39;&#39;(t) + &#39;&#39;P<sub>E<sup>0</sup></sub>&#39;&#39;(t)=1. The rate constant &#39;&#39;k&#39;&#39;<sub>1</sub><sup>0</sup> can be taken as &#39;&#39;k&#39;&#39;<sub>1</sub><sup>0</sup>=&#39;&#39;k&#39;&#39;<sub>1</sub>[S], assuming [S] is time-independent. Given that a single enzyme is unlikely to deplete all the substrate presence, [S] can be considered constant, virtually being unaffected.</span></span></p> <p> <span style="font-size:12px;"><span style="font-family: trebuchet ms,helvetica,sans-serif;">Equations 8-10 become a system of linear first-order differential equations that can be solved exactly for &#39;&#39;P<sub>E</sub>&#39;&#39;(t), &#39;&#39;P<sub>ES</sub>&#39;&#39;(t) and &#39;&#39;P<sub>E<sup>0</sup></sub>&#39;&#39;(t).</span></span></p> </html>