User:Nancy T. Miles/Notebook/N.Miles Lab 2013-09-03/2013/10/01

From OpenWetWare
Jump to: navigation, search
BDLlogo notext lr.png Biomaterials Design Lab Report.pngMain project page
Resultset previous.pngPrevious entry      Next entryResultset next.png



Objective

To monitor the kinetics and yield of the horseradish peroxidase-catalyzed oxidation of luminol. These experiments will be compared to future experiments with HRP-functionalized nanoparticles. These experiments are also meant to introduce researchers to stopped-flow techniques and rapid data collection.

Description

Three sets of measurements will be performed on Oct 1 and Oct 2.

  1. UV-Vis Absorbance of reactants, catalysts, and products
    1. horseradish peroxidase (Use stock solution)
    2. luminol (use stock solution)
    3. 3-aminophthalic acid (product of reaction between luminol and H2O2 catalyzed by HRP. In order to take this measurement, react (in 1:1 ratio or with slight excess H2O2) luminol with H2O2 in presence of HRP. Allow the reaction to proceed for 5 minutes; take the spectrum)
  2. Chemiluminescence of luminol oxidation reaction initiated by stopped flow mixer
    1. Add HRP/Luminol stock solution to stopped flow mixer
    2. Add H2O2 stock solution to stopped flow mixer
    3. equilibrate mixer tubes with sample.
    4. Initiate Mixing
    5. Measure light produced as result of reaction, integrated over a specific time range
    6. Integrate area under the curve
  3. Kinetics of luminol oxidized by changes in absorption spectrum, reaction carried out in stopped flow mixer
    1. Add HRP/Luminol stock solution to stopped flow mixer
    2. Add H2O2 stock solution to stopped flow mixer
    3. equilibrate mixer tubes with sample.
    4. Initiate Mixing
    5. Using luminol and 3-aminophthalic acid spectra as endpoints, determine the kinetics of 3-aminophthalic acid synthesis.
  • Matt Hartings Note: We will be doing Step 1 (while I'm teaching my other class) and Step 3 (after I get back from class) today. We'll do step 2 tomorrow.

Data

20131001 uvvish2o2ntmm.png

To find the concentration of H2O2, use Beer's Law

  • Absorbance at 240 = 1.219
  • Molar Absorbtivity = 4000 1/Mxcm
  • b Pathlenght = 1cm
  • Concentration = 0.030475 mM

Notes

This area is for any observations or conclusions that you would like to note.


Use categories like tags. Change the "Course" category to the one corresponding to your course. The "Miscellaneous" tag can be used for particular experiments, as instructed by your professor. Please be sure to change or delete this tag as required so that the categories remain well organized.