Young Wha Lee

From OpenWetWare
Revision as of 11:42, 18 November 2007 by Young Wha Lee (talk | contribs)


I am a 6th year graduate student in the University Program in Genetics and Genomics at Duke, advised by Dr. John Willis (Duke) and Dr. John Kelly (University of Kansas). I am interested in complex trait variation and evolution.

  • What is the the genetic basis of complex traits?
  • What processes maintain standing variation for complex traits?
  • Is the genetic architecture of the trait itself evolvable?
  • Does the genetic architecture of standing variation constrain adaptation and divergence?

I work mostly on a population of Mimulus guttatus on Iron Mountain in the Oregon Cascades.

  • The site

It's an awesome field site; an alpine meadow of about 1200 sq ft, at elevation 4000 feet off a wildflower hiking trail. The population census is in the hundreds of thousands, the monkeyflowers are annuals producing usually one fruit, the growing season is short and extreme (plants germinate under snow or overwinter, and die from drought). Also, there is a lot of micro-habitat variation in soil moisture and temperature (and who knows what else). Here are some pictures:

  • The trait

The focal trait is flower size. Biometric tests (see Kelly and Willis 2001) have shown that much of the abundant standing variation for this trait is due to alleles at intermediate frequency. Flower size is genetically correlated with traits that have consequences for fitness in the field such as flowering time (drought escape), WUE (drought tolerance) as well as pollen number and seed set. What maintains flower size variation at a given locus? For example, is it GEI for fitness in a heterogenous environment? Antagonistic pleiotropy with flowering time in a water limited growing season? I aim to test these hyotheses in field conditions.

  • The genetics

  1. Genetic architecture of flower size standing variation: I have generated 3 independent F2 mapping populations of large flowered individuals from Iron Mountain crossed to small flowered individuals, sample size 400 each. I have completed linkage maps of 150-180 markers for each population and measured 11 traits: flower size and other floral morphology traits, flowering time, leaf width, and fertililty components such as seed set, pollen viability, and pollen number. The goal of this study is to 1)describe the genetic architecture of flower size & floral morphology traits 2)compare the latter with that of fertility components and 3)show the degree to which morphological variation in floral traits is a pleiotropic consequence of unconditionally deleterious mutations affecting fertility.
  1. Defining the alleles: Simultaneously I have introgressed the same F1 alleles into a common background (IM62, an Iron Mountain inbred line) and generated 4th generation near-isogenic lines (NILs). I have confirmed the effects of many of the same flower size QTLs mapped in the F2 experiment in the NIL. I am in the progress of pegging QTLs to scaffolds from the 6X build of the Mimulus genome. Recombination rates are quite high in many of the QTL regions (50-100 kB per cM in some cases), facilitating cloning efforts. I aim to map down to 50 kB by recombination, then move to an LD mapping approach to define the segregating alleles using an existing panel of ~150 randomly extracted Iron Mountain inbred lines. My goal is to look at allele dynamics in the source site.
  1. Comparative QTL mapping: I am also doing a comparison of the genetic architecture of the same set of floral morphology traits across three levels of divergence - within population (Iron Mountain annual guttatus), between ecogeographic races (perennial and annual guttatus), and between species (M. nasutus and annual M. guttatus)


Wu, C. A., D. B. Lowry, A. M. Cooley, K. M. Wright, Y. W. Lee, and J. H. Willis. (2007). Mimulus is an emerging model system for the integration of ecological and genomic studies. Heredity (in press)

Xu X, Hotta CT, Dodd AN, Love J, Sharrock R, Lee YW, Xie Q, Johnson CH, Webb AA. (2007). Distinct Light and Clock Modulation of Cytosolic Free Ca2+ Oscillations and Rhythmic CHLOROPHYLL A/B BINDING PROTEIN2 Promoter Activity in Arabidopsis. Plant Cell (in press)


B.A. Biology. Vanderbilt University. 2002.

Contact Info


Department of Biology, Duke University. Box 90338 Durham, NC 27708

here is a CV: