Difference between revisions of "User:Timothee Flutre/Notebook/Postdoc/2011/11/10"

From OpenWetWare
Jump to: navigation, search
(Bayesian model of univariate linear regression for QTL detection: add R code)
(fix raw html notebook nav)
 
(15 intermediate revisions by one other user not shown)
Line 2: Line 2:
 
|-
 
|-
 
|style="background-color: #EEE"|[[Image:owwnotebook_icon.png|128px]]<span style="font-size:22px;"> Project name</span>
 
|style="background-color: #EEE"|[[Image:owwnotebook_icon.png|128px]]<span style="font-size:22px;"> Project name</span>
|style="background-color: #F2F2F2" align="center"|<html><img src="/images/9/94/Report.png" border="0" /></html> [[{{#sub:{{FULLPAGENAME}}|0|-11}}|Main project page]]<br />{{#if:{{#lnpreventry:{{FULLPAGENAME}}}}|<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>[[{{#lnpreventry:{{FULLPAGENAME}}}}{{!}}Previous entry]]<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>}}{{#if:{{#lnnextentry:{{FULLPAGENAME}}}}|[[{{#lnnextentry:{{FULLPAGENAME}}}}{{!}}Next entry]]<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>}}
+
|style="background-color: #F2F2F2" align="center"|[[File:Report.png|frameless|link={{#sub:{{FULLPAGENAME}}|0|-11}}]][[{{#sub:{{FULLPAGENAME}}|0|-11}}|Main project page]]<br />{{#if:{{#lnpreventry:{{FULLPAGENAME}}}}|[[File:Resultset_previous.png|frameless|link={{#lnpreventry:{{FULLPAGENAME}}}}]][[{{#lnpreventry:{{FULLPAGENAME}}}}{{!}}Previous entry]]&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;}}{{#if:{{#lnnextentry:{{FULLPAGENAME}}}}|[[{{#lnnextentry:{{FULLPAGENAME}}}}{{!}}Next entry]][[File:Resultset_next.png|frameless|link={{#lnnextentry:{{FULLPAGENAME}}}}]]}}
 
|-
 
|-
 
| colspan="2"|
 
| colspan="2"|
Line 23: Line 23:
 
* '''Likelihood''': we start by writing the usual linear regression for one individual
 
* '''Likelihood''': we start by writing the usual linear regression for one individual
  
<math>\forall i \in \{1,\ldots,N\}, \; y_i = \mu + \beta_1 g_i + \beta_2 \mathbf{1}_{g_i=1} + \epsilon_i \text{ with } \epsilon_i \overset{i.i.d}{\sim} \mathcal{N}(0,\tau^{-1})</math>
+
<math>\forall i \in \{1,\ldots,N\}, \; y_i = \mu + \beta_1 g_i + \beta_2 \mathbf{1}_{g_i=1} + \epsilon_i \; \text{ with } \; \epsilon_i \; \overset{i.i.d}{\sim} \; \mathcal{N}(0,\tau^{-1})</math>
  
 
where <math>\beta_1</math> is in fact the additive effect of the SNP, noted <math>a</math> from now on, and <math>\beta_2</math> is the dominance effect of the SNP, <math>d = a k</math>.
 
where <math>\beta_1</math> is in fact the additive effect of the SNP, noted <math>a</math> from now on, and <math>\beta_2</math> is the dominance effect of the SNP, <math>d = a k</math>.
  
Let's now write the model in matrix notation:
+
Let's now write the model in vector-matrix notation:
  
 
<math>Y = X B + E \text{ where } B = [ \mu \; a \; d ]^T</math>
 
<math>Y = X B + E \text{ where } B = [ \mu \; a \; d ]^T</math>
Line 100: Line 100:
 
<math>\mathsf{P}(B | Y, X, \tau) \propto exp(B^T \Omega^{-1} B - (X^TY)^T\Omega^{-1}\Omega^TB -B^T\Omega^{-1}\Omega^TX^TY)</math>
 
<math>\mathsf{P}(B | Y, X, \tau) \propto exp(B^T \Omega^{-1} B - (X^TY)^T\Omega^{-1}\Omega^TB -B^T\Omega^{-1}\Omega^TX^TY)</math>
  
This now becomes easy to factorizes totally:
+
This now becomes easy to factorizes totally (remember to add the term in <math>Y</math> to [https://learnbayes.org/index.php?option=com_content&view=article&id=77:completesquare&catid=83:reference&Itemid=479 complete the square]):
  
<math>\mathsf{P}(B | Y, X, \tau) \propto exp((B^T - \Omega X^TY)^T\Omega^{-1}(B - \Omega X^TY))</math>
+
<math>\mathsf{P}(B | Y, X, \tau) \propto exp((B - \Omega X^TY)^T\Omega^{-1}(B - \Omega X^TY))</math>
  
 
We recognize the [http://en.wikipedia.org/wiki/Kernel_%28statistics%29 kernel] of a Normal distribution, allowing us to write the conditional posterior as:
 
We recognize the [http://en.wikipedia.org/wiki/Kernel_%28statistics%29 kernel] of a Normal distribution, allowing us to write the conditional posterior as:
Line 195: Line 195:
 
Now we can integrate out <math>\tau</math> (note the small typo in equation 9 of supplementary text S1 of Servin & Stephens):
 
Now we can integrate out <math>\tau</math> (note the small typo in equation 9 of supplementary text S1 of Servin & Stephens):
  
<math>\mathsf{P}(Y | X) = (2\pi)^{-\frac{N}{2}} \left( \frac{|\Omega|}{|\Sigma_B|} \right)^{\frac{1}{2}} \frac{\frac{\lambda}{2}^{\frac{\kappa}{2}}}{\Gamma(\frac{\kappa}{2})} \int \tau^{\frac{N+\kappa}{2}-1} exp \left( -\frac{\tau}{2} (Y^TY - Y^TX\Omega X^TY + \lambda) \right)</math>
+
<math>\mathsf{P}(Y | X) = (2\pi)^{-\frac{N}{2}} \left( \frac{|\Omega|}{|\Sigma_B|} \right)^{\frac{1}{2}} \frac{\frac{\lambda}{2}^{\frac{\kappa}{2}}}{\Gamma(\frac{\kappa}{2})} \int \tau^{\frac{N+\kappa}{2}-1} exp \left( -\frac{\tau}{2} (Y^TY - Y^TX\Omega X^TY + \lambda) \right) \mathsf{d}\tau</math>
  
 
Inside the integral, we recognize the almost-complete pdf of a Gamma distribution.
 
Inside the integral, we recognize the almost-complete pdf of a Gamma distribution.
Line 236: Line 236:
  
 
<math>\mathrm{BF} = \sum_{m \, \in \, \text{grid}} \frac{1}{M} \, \mathrm{BF}(\sigma_a^{(m)}, \sigma_d^{(m)})</math>
 
<math>\mathrm{BF} = \sum_{m \, \in \, \text{grid}} \frac{1}{M} \, \mathrm{BF}(\sigma_a^{(m)}, \sigma_d^{(m)})</math>
 +
 +
In eQTL studies, the weights can be estimated from the data using a hierarchical model (see below), by pooling all genes together as in Veyrieras ''et al'' (PLoS Genetics, 2010).
  
  
Line 266: Line 268:
 
</nowiki>
 
</nowiki>
  
In the same vein as what is explained [http://openwetware.org/wiki/User:Timothee_Flutre/Notebook/Postdoc/2011/06/28 here], we can simulate data and check the BF:
+
In the same vein as what is explained [http://openwetware.org/wiki/User:Timothee_Flutre/Notebook/Postdoc/2011/06/28 here], we can simulate data under different scenarios and check the BFs:
  
 
  <nowiki>
 
  <nowiki>
N <- 100
+
N <- 300    # play with it
 +
PVE <- 0.1  # play with it
 +
grid <- c(0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2)
 
MAF <- 0.3
 
MAF <- 0.3
 
G <- rbinom(n=N, size=2, prob=MAF)
 
G <- rbinom(n=N, size=2, prob=MAF)
PVE <- 0.4
 
 
tau <- 1
 
tau <- 1
 
a <- sqrt((2/5) * (PVE / (tau * MAF * (1-MAF) * (1-PVE))))
 
a <- sqrt((2/5) * (PVE / (tau * MAF * (1-MAF) * (1-PVE))))
Line 278: Line 281:
 
mu <- rnorm(n=1, mean=0, sd=10)
 
mu <- rnorm(n=1, mean=0, sd=10)
 
Y <- mu + a * G + d * (G == 1) + rnorm(n=N, mean=0, sd=tau)
 
Y <- mu + a * G + d * (G == 1) + rnorm(n=N, mean=0, sd=tau)
BF(G, Y, 0.1, 0.1/4)
+
for(m in 1:length(grid))
 +
  print(BF(G, Y, grid[m], grid[m]/4))
 
</nowiki>
 
</nowiki>
  
  
* '''Binary phenotype''': case-control like in GWAS, logistic regression, see Guan & Stephens (2008) for Laplace approximation
+
* '''Binary phenotype''': using a similar notation, we model case-control studies with a [http://en.wikipedia.org/wiki/Logistic_regression logistic regression] where the probability to be a case is <math>\mathsf{P}(y_i = 1) = p_i</math>.
 +
 
 +
There are many equivalent ways to write the likelihood, the usual one being:
 +
 
 +
<math>y_i | p_i \; \overset{i.i.d}{\sim} \; \mathrm{Binomial}(1,p_i)</math> with the [http://en.wikipedia.org/wiki/Log-odds log-odds] (logit function) being <math>\mathrm{ln} \frac{p_i}{1 - p_i} = \mu + a \, g_i + d \, \mathbf{1}_{g_i=1}</math>
 +
 
 +
Let's use <math>X_i^T=(1 \; g_i \; \mathbf{1}_{g_i=1})</math> to denote the <math>i</math>-th row of the design matrix <math>X</math>. We can also keep the same definition as above for <math>B=(\mu \; a \; d)^T</math>. Thus we have:
 +
 
 +
<math>p_i = \frac{e^{X_i^TB}}{1 + e^{X_i^TB}}</math>
 +
 
 +
As the <math>y_i</math>'s can only take <math>0</math> and <math>1</math> as values, the likelihood can be written as:
 +
 
 +
<math>\mathcal{L}(B) = \mathsf{P}(Y | X, B) = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i}</math>
 +
 
 +
We still use the same prior as above for <math>B</math> (but there is no <math>\tau</math> anymore), so that:
 +
 
 +
<math>B | \Sigma_B \sim \mathcal{N}_3(0, \Sigma_B)</math>
 +
 
 +
where <math>\Sigma_B</math> is a 3 x 3 matrix with <math>(\sigma_\mu^2 \; \sigma_a^2 \; \sigma_d^2)</math> on the diagonal and 0 elsewhere.
 +
 
 +
As above, the Bayes factor is used to compare the two models:
 +
 
 +
<math>\mathrm{BF} = \frac{\mathsf{P}(Y | X, M1)}{\mathsf{P}(Y | X, M0)} = \frac{\mathsf{P}(Y | X, a \neq 0, d \neq 0)}{\mathsf{P}(Y | X, a=0, d=0)} = \frac{\int \mathsf{P}(B) \mathsf{P}(Y | X, B) \mathrm{d}B}{\int \mathsf{P}(\mu) \mathsf{P}(Y | X, \mu) \mathrm{d}\mu}</math>
 +
 
 +
The interesting point here is that there is no way to analytically calculate these integrals (marginal likelihoods). Therefore, we will use [http://en.wikipedia.org/wiki/Laplace_approximation Laplace's method] to approximate them, as in Guan & Stephens (2008).
 +
 
 +
Starting with the numerator:
 +
 
 +
<math>\mathsf{P}(Y|X,M1) = \int \exp \left[ N \left( \frac{1}{N} \mathrm{ln} \, \mathsf{P}(B) + \frac{1}{N} \mathrm{ln} \, \mathsf{P}(Y | X, B) \right) \right] \mathsf{d}B</math>
 +
 
 +
Let's use <math>f</math> to denote the function inside the exponential:
 +
 
 +
<math>\mathsf{P}(Y|X,M1) = \int \exp \left( N \; f(B) \right) \mathsf{d}B</math>
 +
 
 +
The function <math>f</math> is defined by:
 +
 
 +
<math>f: \mathbb{R}^3 \rightarrow \mathbb{R}</math>
 +
 
 +
<math>f(B) = \frac{1}{N} \left( -\frac{3}{2} \mathrm{ln}(2 \pi) - \frac{1}{2} \mathrm{ln}(|\Sigma_B|) - \frac{1}{2}(B^T \Sigma_B^{-1} B) \right) + \frac{1}{N} \sum_{i=1}^N \left( y_i \mathrm{ln}(p_i) + (1-y_i) \mathrm{ln}(1 - p_i) \right)</math>
 +
 
 +
This function will then be used to approximate the integral, like this:
 +
 
 +
<math>\mathsf{P}(Y|X,M1) \approx N^{-3/2} (2 \pi)^{3/2} |H(B^\star)|^{-1/2} e^{N f(B^\star)}</math>
 +
 
 +
where <math>H</math> is the [http://en.wikipedia.org/wiki/Hessian_matrix Hessian] of <math>f</math> and <math>B^\star = (\mu^\star a^\star d^\star)^T</math> is the point at which <math>f</math> is maximized.
 +
 
 +
We therefore need two things: <math>H</math> and <math>B^\star</math>. Note that for both we need to calculate the first derivatives of <math>f</math>. As <math>f</math> is multi-dimensional (it takes values in <math>\mathbb{R}^3</math>), we need to calculate its [http://en.wikipedia.org/wiki/Gradient gradient].
 +
 
 +
In the following, some formulas from [http://en.wikipedia.org/wiki/Matrix_calculus matrix calculus] are sometimes required. In such cases, I will use the [http://en.wikipedia.org/wiki/Matrix_calculus#Layout_conventions numerator layout].
 +
 
 +
<math>\nabla f = \frac{\partial f}{\partial B} = \left( \frac{\partial f}{\partial \mu} \; \frac{\partial f}{\partial a} \; \frac{\partial f}{\partial d} \right)</math>
 +
 
 +
<math>\nabla f = - \frac{1}{2N} \frac{\partial B^T\Sigma_B^{-1}B}{\partial B} + \frac{1}{N} \sum_i \left( y_i \frac{\partial \mathrm{ln}(p_i)}{\partial B} + (1-y_i) \frac{\partial \mathrm{ln}(1-p_i)}{\partial B} \right)</math>
 +
 
 +
<math>\nabla f = - \frac{1}{N} B^T\Sigma_B^{-1} + \frac{1}{N} \sum_i \left( \frac{y_i}{p_i} - \frac{1-y_i}{1-p_i} \right) \frac{\partial p_i}{\partial B}</math>
 +
 
 +
A simple form for the first derivatives of <math>p_i</math> also exists when writing <math>p_i = e^{X_i^tB} (1 + e^{X_i^tB})^{-1}</math>:
 +
 
 +
<math>\frac{\partial p_i}{\partial B} = \frac{\partial e^{X_i^TB}}{\partial B} (1 + e^{X_i^TB})^{-1} + e^{X_i^TB} \frac{\partial (1 + e^{X_i^TB})^{-1}}{\partial B}</math>
 +
 
 +
<math>\frac{\partial p_i}{\partial B} = e^{X_i^TB} \frac{\partial X_i^TB}{\partial B} (1 + e^{X_i^TB})^{-1} - e^{X_i^TB} (1 + e^{X_i^TB})^{-2} \frac{\partial (1 + e^{X_i^TB})}{\partial B}</math>
 +
 
 +
<math>\frac{\partial p_i}{\partial B} = p_i X_i^T - p_i (1 + e^{X_i^TB})^{-1} e^{X_i^TB} \frac{\partial X_i^TB}{\partial B}</math>
 +
 
 +
<math>\frac{\partial p_i}{\partial B} = p_i (1 - p_i) X_i^T</math>
 +
 
 +
This simplifies the gradient of <math>f</math> into:
 +
 
 +
<math>\nabla f = - \frac{1}{N} B^T\Sigma_B^{-1} + \frac{1}{N} \sum_i (y_i - p_i) X_i^T</math>
 +
 
 +
To find <math>B^\star</math>, we set <math>\nabla f(B^\star) = 0</math>. However, in this equation, <math>B^\star</math> is present not only alone but also in the <math>p_i</math>'s. As <math>p_i</math> is a non-linear function of <math>B</math>, the equation can't be solved directly but an iterative procedure is required, typically a [http://en.wikipedia.org/wiki/Nonlinear_conjugate_gradient_method conjugate gradient method] (as in Guan & Stephens) or [http://en.wikipedia.org/wiki/Newton_method_in_optimization Newton's method]. The former only requires <math>f</math> and <math>\nabla f</math> while the latter also requires <math>H</math>. Remember that, in any case, we need <math>H</math> for the Laplace approximation, so let's calculate it:
 +
 
 +
<math>H = - \frac{1}{N} \Sigma_B^{-1} - \frac{1}{N} \sum_i \frac{\partial p_i}{\partial B} X_i^T</math>
 +
 
 +
<math>H = - \frac{1}{N} \Sigma_B^{-1} - \frac{1}{N} \sum_i X_i^T p_i (1-p_i) X_i</math>
 +
 
 +
<math>H = - \frac{1}{N} (\Sigma_B^{-1} + X^T W X)</math>
 +
 
 +
where <math>W</math> is the N x N matrix with <math>p_i(1-p_i)</math> on the diagonal.
 +
 
 +
Note that all second derivatives of <math>f</math> are strictly negative. Therefore, <math>f</math> is globally convex, which means that it has a unique global maximum, at <math>B^\star</math>. As a consequence, we have the right to use Laplace's method to approximate the integral of <math>f</math> around its maximum.
 +
 
 +
implementation in R -> to do
  
to do
+
finding the effect sizes and their std error: to do
  
  
* '''Link between Bayes factor and P-value''': see Wakeley (2008)
+
* '''Link between Bayes factor and P-value''': see Wakefield (2008)
  
 
to do
 
to do
Line 302: Line 388:
  
  
* '''Confounding factors in phenotype''': factor analysis, see Stegle ''et al'' (PLoS Computational Biology, 2010)
+
* '''Confounders in phenotype''': it is well known in molecular biology that any experiment involving several assays (e.g. measuring gene expression levels with a DNA microarray) suffers from "unknown confounders", the most (in)famous being the so-called "batch effects".
 +
 
 +
For instance, samples from individual 1 and 2 are correlated with each other because they were treated another day than all the other samples. Such a correlations has nothing to do with the genotype at a given SNP (in most cases). However, the core model, <math>y_i = \mu + \beta g_i + \epsilon_i</math> assumes that the errors are uncorrelated between individuals: <math>\epsilon_i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0,\tau^{-1})</math>. If this is not the case, i.e. if the <math>y_i</math>'s are correlated but this correlation has nothing to do with the <math>g_i</math>'s, then more variance in the errors won't be accounted for, and we'll loose power when trying to detect weak, yet non-zero <math>\beta</math>.
 +
 
 +
An intuitive way of removing these confounders is to realize that we can use all gene expression levels to try to identify them. Indeed, batch effects are very likely to affect all genes in a sample (though possibly at different magnitudes). As the effect of the confounders are, as a first approximation, typically much bigger than the effect of a SNP genotype, we can try to learn the confounders using all gene expression levels, and only them. So let's put all of them into a <math>G \times N</math> matrix <math>Y_1</math> with genes in rows and individuals in columns.
 +
 
 +
For the moment, the data are expressed in the [http://en.wikipedia.org/wiki/Standard_basis standard basis], i.e. the basis of the observations. But some confounders are present in these data, they contribute with noise and redundancy and hence dilute the signal. The idea is, first, to identify a new basis which will correspond to a "mix" of the original samples (e.g. one component of this "mix" may correspond to the day at which the samples were processed), and second, to remove these components from the data in order to only keep the signal.
  
to do
+
to be continued
 +
 
 +
see also factor analysis, see Stegle ''et al'' (PLoS Computational Biology, 2010)
  
  
* '''Genetic relatedness''': linear mixed model
+
* '''Confounders in genotype''': mainly pop structure and genetic relatedness, linear mixed model (LMM), see Zhou & Stephens (Nature Genetics, 2012)
  
 
to do
 
to do
  
  
* '''Discrete phenotype''': count data as from RNA-seq, Poisson-like likelihood
+
* '''Discrete phenotype''': count data (e.g. from RNA-seq), Poisson-like likelihood, generalized linear model (GLM), see Sun (Biometrics, 2012)
  
 
to do
 
to do
  
  
* '''Multiple phenotypes''': matrix-variate distributions, tensors
+
* '''Multiple phenotypes''': matrix-variate distributions, see Flutre et al (PLoS Genetics, 2013), Wen & Stephens (Annals of Applied Statistics, 2014), Wen (Biometrics, 2014)
  
 
to do
 
to do
  
  
* '''Non-independent genes''': enrichment in known pathways, learn "modules"
+
* '''Non-independent genes''': enrichment in known pathways, learn "modules", distributions on networks
  
 
to do
 
to do

Latest revision as of 20:05, 26 September 2017

Owwnotebook icon.png Project name Report.pngMain project page
Resultset previous.pngPrevious entry      Next entryResultset next.png

Bayesian model of univariate linear regression for QTL detection

This page aims at helping people like me, interested in quantitative genetics, to get a better understanding of some Bayesian models, most importantly the impact of the modeling assumptions as well as the underlying maths. It starts with a simple model, and gradually increases the scope to relax assumptions. See references to scientific articles at the end.


  • Data: let's assume that we obtained data from N individuals. We note Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_1,\ldots,y_N} the (quantitative) phenotypes (e.g. expression levels at a given gene), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g_1,\ldots,g_N} the genotypes at a given SNP (encoded as allele dose: 0, 1 or 2).


  • Goal: we want to assess the evidence in the data for an effect of the genotype on the phenotype.


  • Assumptions: the relationship between genotype and phenotype is linear; the individuals are not genetically related; there is no hidden confounding factors in the phenotypes.


  • Likelihood: we start by writing the usual linear regression for one individual

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \forall i \in \{1,\ldots,N\}, \; y_i = \mu + \beta_1 g_i + \beta_2 \mathbf{1}_{g_i=1} + \epsilon_i \; \text{ with } \; \epsilon_i \; \overset{i.i.d}{\sim} \; \mathcal{N}(0,\tau^{-1})}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta_1} is in fact the additive effect of the SNP, noted Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle a} from now on, and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta_2} is the dominance effect of the SNP, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle d = a k} .

Let's now write the model in vector-matrix notation:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle Y = X B + E \text{ where } B = [ \mu \; a \; d ]^T}

This gives the following multivariate Normal distribution for the phenotypes:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle Y | X, \tau, B \sim \mathcal{N}(XB, \tau^{-1} I_N)}

Even though we can write the likelihood as a multivariate Normal, I still keep the term "univariate" in the title because the regression has a single response, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle Y} . It is usual to keep the term "multivariate" for the case where there is a matrix of responses (i.e. multiple phenotypes).

The likelihood of the parameters given the data is therefore:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathcal{L}(\tau, B) = \mathsf{P}(Y | X, \tau, B)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathcal{L}(\tau, B) = \left(\frac{\tau}{2 \pi}\right)^{\frac{N}{2}} exp \left( -\frac{\tau}{2} (Y - XB)^T (Y - XB) \right)}


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau, B) = \mathsf{P}(\tau) \mathsf{P}(B | \tau)}

A Gamma distribution for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau \sim \Gamma(\kappa/2, \, \lambda/2)}

which means:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau) = \frac{\frac{\lambda}{2}^{\kappa/2}}{\Gamma(\frac{\kappa}{2})} \tau^{\frac{\kappa}{2}-1} e^{-\frac{\lambda}{2} \tau}}

And a multivariate Normal distribution for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B | \tau \sim \mathcal{N}(\vec{0}, \, \tau^{-1} \Sigma_B) \text{ with } \Sigma_B = diag(\sigma_{\mu}^2, \sigma_a^2, \sigma_d^2)}

which means:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | \tau) = \left(\frac{\tau}{2 \pi}\right)^{\frac{3}{2}} |\Sigma_B|^{-\frac{1}{2}} exp \left(-\frac{\tau}{2} B^T \Sigma_B^{-1} B \right)}


  • Joint posterior (1):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau, B | Y, X) = \mathsf{P}(\tau | Y, X) \mathsf{P}(B | Y, X, \tau)}


  • Conditional posterior of B:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) = \frac{\mathsf{P}(B, Y | X, \tau)}{\mathsf{P}(Y | X, \tau)}}

Let's neglect the normalization constant for now:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto \mathsf{P}(B | \tau) \mathsf{P}(Y | X, \tau, B)}

Similarly, let's keep only the terms in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} for the moment:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto exp(B^T \Sigma_B^{-1} B) exp((Y-XB)^T(Y-XB))}

We expand:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto exp(B^T \Sigma_B^{-1} B - Y^TXB -B^TX^TY + B^TX^TXB)}

We factorize some terms:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto exp(B^T (\Sigma_B^{-1} + X^TX) B - Y^TXB -B^TX^TY)}

Importantly, let's define:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Omega = (\Sigma_B^{-1} + X^TX)^{-1}}

We can see that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Omega^T=\Omega} , which means that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Omega} is a symmetric matrix. This is particularly useful here because we can use the following equality: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Omega^{-1}\Omega^T=I} .

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto exp(B^T \Omega^{-1} B - (X^TY)^T\Omega^{-1}\Omega^TB -B^T\Omega^{-1}\Omega^TX^TY)}

This now becomes easy to factorizes totally (remember to add the term in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle Y} to complete the square):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X, \tau) \propto exp((B - \Omega X^TY)^T\Omega^{-1}(B - \Omega X^TY))}

We recognize the kernel of a Normal distribution, allowing us to write the conditional posterior as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B | Y, X, \tau \sim \mathcal{N}(\Omega X^TY, \tau^{-1} \Omega)}


  • Posterior of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} :

Similarly to the equations above:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau | Y, X) \propto \mathsf{P}(\tau) \mathsf{P}(Y | X, \tau)}

But now, to handle the second term, we need to integrate over Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} , thus effectively taking into account the uncertainty in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau | Y, X) \propto \mathsf{P}(\tau) \int \mathsf{P}(B | \tau) \mathsf{P}(Y | X, \tau, B) \mathsf{d}B}

Again, we use the priors and likelihoods specified above (but everything inside the integral is kept inside it, even if it doesn't depend on Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} !):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau | Y, X) \propto \tau^{\frac{\kappa}{2} - 1} e^{-\frac{\lambda}{2} \tau} \int \tau^{3/2} \tau^{N/2} exp(-\frac{\tau}{2} B^T \Sigma_B^{-1} B) exp(-\frac{\tau}{2} (Y - XB)^T (Y - XB)) \mathsf{d}B}

As we used a conjugate prior for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} , we know that we expect a Gamma distribution for the posterior. Therefore, we can take Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau^{N/2}} out of the integral and start guessing what looks like a Gamma distribution. We also factorize inside the exponential:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau | Y, X) \propto \tau^{\frac{N+\kappa}{2} - 1} e^{-\frac{\lambda}{2} \tau} \int \tau^{3/2} exp \left[-\frac{\tau}{2} \left( (B - \Omega X^T Y)^T \Omega^{-1} (B - \Omega X^T Y) - Y^T X \Omega X^T Y + Y^T Y \right) \right] \mathsf{d}B}

We recognize the conditional posterior of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} . This allows us to use the fact that the pdf of the Normal distribution integrates to one:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(\tau | Y, X) \propto \tau^{\frac{N+\kappa}{2} - 1} e^{-\frac{\lambda}{2} \tau} exp\left[-\frac{\tau}{2} (Y^T Y - Y^T X \Omega X^T Y) \right]}

We finally recognize a Gamma distribution, allowing us to write the posterior as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau | Y, X \sim \Gamma \left( \frac{N+\kappa}{2}, \; \frac{1}{2} (Y^T Y - Y^T X \Omega X^T Y + \lambda) \right)}


  • Joint posterior (2): sometimes it is said that the joint posterior follows a Normal Inverse Gamma distribution:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B, \tau | Y, X \sim \mathcal{N}IG(\Omega X^TY, \; \tau^{-1}\Omega, \; \frac{N+\kappa}{2}, \; \frac{\lambda^\ast}{2})}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \lambda^\ast = Y^T Y - Y^T X \Omega X^T Y + \lambda}


  • Marginal posterior of B: we can now integrate out Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X) = \int \mathsf{P}(\tau) \mathsf{P}(B | Y, X, \tau) \mathsf{d}\tau}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X) = \frac{\frac{\lambda^\ast}{2}^{\frac{N+\kappa}{2}}}{(2\pi)^\frac{3}{2} |\Omega|^{\frac{1}{2}} \Gamma(\frac{N+\kappa}{2})} \int \tau^{\frac{N+\kappa+3}{2}-1} exp \left[-\tau \left( \frac{\lambda^\ast}{2} + (B - \Omega X^TY)^T \Omega^{-1} (B - \Omega X^TY) \right) \right] \mathsf{d}\tau}

Here we recognize the formula to integrate the Gamma function:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X) = \frac{\frac{\lambda^\ast}{2}^{\frac{N+\kappa}{2}} \Gamma(\frac{N+\kappa+3}{2})}{(2\pi)^\frac{3}{2} |\Omega|^{\frac{1}{2}} \Gamma(\frac{N+\kappa}{2})} \left( \frac{\lambda^\ast}{2} + (B - \Omega X^TY)^T \Omega^{-1} (B - \Omega X^TY) \right)^{-\frac{N+\kappa+3}{2}}}

And we now recognize a multivariate Student's t-distribution:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(B | Y, X) = \frac{\Gamma(\frac{N+\kappa+3}{2})}{\Gamma(\frac{N+\kappa}{2}) \pi^\frac{3}{2} |\lambda^\ast \Omega|^{\frac{1}{2}} } \left( 1 + \frac{(B - \Omega X^TY)^T \Omega^{-1} (B - \Omega X^TY)}{\lambda^\ast} \right)^{-\frac{N+\kappa+3}{2}}}

We hence can write:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B | Y, X \sim \mathcal{S}_{N+\kappa}(\Omega X^TY, \; (Y^T Y - Y^T X \Omega X^T Y + \lambda) \Omega)}


  • Bayes Factor: one way to answer our goal above ("is there an effect of the genotype on the phenotype?") is to do hypothesis testing.

We want to test the following null hypothesis:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H_0: \; a = d = 0}

In Bayesian modeling, hypothesis testing is performed with a Bayes factor, which in our case can be written as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{BF} = \frac{\mathsf{P}(Y | X, a \neq 0, d \neq 0)}{\mathsf{P}(Y | X, a = 0, d = 0)}}

We can shorten this into:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{BF} = \frac{\mathsf{P}(Y | X)}{\mathsf{P}_0(Y)}}

Note that, compare to frequentist hypothesis testing which focuses on the null, the Bayes factor requires to explicitly model the data under the alternative. This makes a big difference when interpreting the results (see below).

Let's start with the numerator:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y | X) = \int \mathsf{P}(\tau) \mathsf{P}(Y | X, \tau) \mathsf{d}\tau}

First, let's calculate what is inside the integral:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y | X, \tau) = \frac{\mathsf{P}(B | \tau) \mathsf{P}(Y | X, \tau, B)}{\mathsf{P}(B | Y, X, \tau)}}

Using the formula obtained previously and doing some algebra gives:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y | X, \tau) = \left( \frac{\tau}{2 \pi} \right)^{\frac{N}{2}} \left( \frac{|\Omega|}{|\Sigma_B|} \right)^{\frac{1}{2}} exp\left( -\frac{\tau}{2} (Y^TY - Y^TX\Omega X^TY) \right)}

Now we can integrate out Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} (note the small typo in equation 9 of supplementary text S1 of Servin & Stephens):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y | X) = (2\pi)^{-\frac{N}{2}} \left( \frac{|\Omega|}{|\Sigma_B|} \right)^{\frac{1}{2}} \frac{\frac{\lambda}{2}^{\frac{\kappa}{2}}}{\Gamma(\frac{\kappa}{2})} \int \tau^{\frac{N+\kappa}{2}-1} exp \left( -\frac{\tau}{2} (Y^TY - Y^TX\Omega X^TY + \lambda) \right) \mathsf{d}\tau}

Inside the integral, we recognize the almost-complete pdf of a Gamma distribution. As it has to integrate to one, we get:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y | X) = (2\pi)^{-\frac{N}{2}} \left( \frac{|\Omega|}{|\Sigma_B|} \right)^{\frac{1}{2}} \left( \frac{\lambda}{2} \right)^{\frac{\kappa}{2}} \frac{\Gamma(\frac{N+\kappa}{2})}{\Gamma(\frac{\kappa}{2})} \left( \frac{Y^TY - Y^TX\Omega X^TY + \lambda}{2} \right)^{-\frac{N+\kappa}{2}}}

We can use this expression also under the null. In this case, as we need neither Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle a} nor Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle d} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} is simply Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mu} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Sigma_B} is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma_{\mu}^2} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X} is a vector of 1's. We can also defines Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Omega_0 = ((\sigma_{\mu}^2)^{-1} + N)^{-1}} . In the end, this gives:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}_0(Y) = (2\pi)^{-\frac{N}{2}} \frac{|\Omega_0|^{\frac{1}{2}}}{\sigma_{\mu}} \left( \frac{\lambda}{2} \right)^{\frac{\kappa}{2}} \frac{\Gamma(\frac{N+\kappa}{2})}{\Gamma(\frac{\kappa}{2})} \left( \frac{Y^TY - \Omega_0 N^2 \bar{Y}^2 + \lambda}{2} \right)^{-\frac{N+\kappa}{2}}}

We can therefore write the Bayes factor:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{BF} = \left( \frac{|\Omega|}{\Omega_0} \right)^{\frac{1}{2}} \frac{1}{\sigma_a \sigma_d} \left( \frac{Y^TY - Y^TX\Omega X^TY + \lambda}{Y^TY - \Omega_0 N^2 \bar{Y}^2 + \lambda} \right)^{-\frac{N+\kappa}{2}}}

When the Bayes factor is large, we say that there is enough evidence in the data to support the alternative. Indeed, the Bayesian testing procedure corresponds to measuring support for the specific alternative hypothesis compared to the null hypothesis. Importantly, note that, for a frequentist testing procedure, we would say that there is enough evidence in the data to reject the null. However we wouldn't say anything about the alternative as we don't model it.

The threshold to say that a Bayes factor is large depends on the field. It is possible to use the Bayes factor as a test statistic when doing permutation testing, and then control the false discovery rate. This can give an idea of a reasonable threshold.


  • Hyperparameters: the model has 5 hyperparameters, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \{\kappa, \, \lambda, \, \sigma_{\mu}, \, \sigma_a, \, \sigma_d\}} . How should we choose them?

Such a question is never easy to answer. But note that all hyperparameters are not that important, especially in typical quantitative genetics applications. For instance, we are mostly interested in those that determine the magnitude of the effects, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma_a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma_d} , so let's deal with the others first.

As explained in Servin & Stephens, the posteriors for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} change appropriately with shifts (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y+c} ) and scaling (Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y \times c} ) in the phenotype when taking their limits. This also gives us a new Bayes factor, the one used in practice (see Guan & Stephens, 2008):

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{lim}_{\sigma_{\mu} \rightarrow \infty \; ; \; \lambda \rightarrow 0 \; ; \; \kappa \rightarrow 0 } \; \mathrm{BF} = \left( \frac{N}{|\Sigma_B^{-1} + X^TX|} \right)^{\frac{1}{2}} \frac{1}{\sigma_a \sigma_d} \left( \frac{Y^TY - Y^TX (\Sigma_B^{-1} + X^TX)^{-1} X^TY}{Y^TY - N \bar{Y}^2} \right)^{-\frac{N}{2}}}

Now, for the important hyperparameters, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma_a} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma_d} , it is usual to specify a grid of values, i.e. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle M} pairs Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle (\sigma_a, \sigma_d)} . For instance, Guan & Stephens used the following grid:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle M=4 \; ; \; \sigma_a \in \{0.05, 0.1, 0.2, 0.4\} \; ; \; \sigma_d = \frac{\sigma_a}{4}}

Then, we can average the Bayes factors obtained over the grid using, as a first approximation, equal weights:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{BF} = \sum_{m \, \in \, \text{grid}} \frac{1}{M} \, \mathrm{BF}(\sigma_a^{(m)}, \sigma_d^{(m)})}

In eQTL studies, the weights can be estimated from the data using a hierarchical model (see below), by pooling all genes together as in Veyrieras et al (PLoS Genetics, 2010).


  • Implementation: the following R function is adapted from Servin & Stephens supplementary text 1.
BF <- function(G=NULL, Y=NULL, sigma.a=NULL, sigma.d=NULL, get.log10=TRUE){
  stopifnot(! is.null(G), ! is.null(Y), ! is.null(sigma.a), ! is.null(sigma.d))
  subset <- complete.cases(Y) & complete.cases(G)
  Y <- Y[subset]
  G <- G[subset]
  stopifnot(length(Y) == length(G))
  N <- length(G)
  X <- cbind(rep(1,N), G, G == 1)
  inv.Sigma.B <- diag(c(0, 1/sigma.a^2, 1/sigma.d^2))
  inv.Omega <- inv.Sigma.B + t(X) %*% X
  inv.Omega0 <- N
  tY.Y <- t(Y) %*% Y
  log10.BF <- as.numeric(0.5 * log10(inv.Omega0) -
                         0.5 * log10(det(inv.Omega)) -
                         log10(sigma.a) - log10(sigma.d) -
                         (N/2) * (log10(tY.Y - t(Y) %*% X %*% solve(inv.Omega)
                                        %*% t(X) %*% cbind(Y)) -
                                  log10(tY.Y - N*mean(Y)^2)))
  if(get.log10)
    return(log10.BF)
  else
    return(10^log10.BF)
}

In the same vein as what is explained here, we can simulate data under different scenarios and check the BFs:

N <- 300    # play with it
PVE <- 0.1  # play with it
grid <- c(0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2)
MAF <- 0.3
G <- rbinom(n=N, size=2, prob=MAF)
tau <- 1
a <- sqrt((2/5) * (PVE / (tau * MAF * (1-MAF) * (1-PVE))))
d <- a / 2
mu <- rnorm(n=1, mean=0, sd=10)
Y <- mu + a * G + d * (G == 1) + rnorm(n=N, mean=0, sd=tau)
for(m in 1:length(grid))
  print(BF(G, Y, grid[m], grid[m]/4))


  • Binary phenotype: using a similar notation, we model case-control studies with a logistic regression where the probability to be a case is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(y_i = 1) = p_i} .

There are many equivalent ways to write the likelihood, the usual one being:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_i | p_i \; \overset{i.i.d}{\sim} \; \mathrm{Binomial}(1,p_i)} with the log-odds (logit function) being Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{ln} \frac{p_i}{1 - p_i} = \mu + a \, g_i + d \, \mathbf{1}_{g_i=1}}

Let's use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X_i^T=(1 \; g_i \; \mathbf{1}_{g_i=1})} to denote the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle i} -th row of the design matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X} . We can also keep the same definition as above for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B=(\mu \; a \; d)^T} . Thus we have:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i = \frac{e^{X_i^TB}}{1 + e^{X_i^TB}}}

As the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_i} 's can only take Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle 0} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle 1} as values, the likelihood can be written as:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathcal{L}(B) = \mathsf{P}(Y | X, B) = \prod_{i=1}^N p_i^{y_i} (1-p_i)^{1-y_i}}

We still use the same prior as above for Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} (but there is no Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \tau} anymore), so that:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B | \Sigma_B \sim \mathcal{N}_3(0, \Sigma_B)}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \Sigma_B} is a 3 x 3 matrix with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle (\sigma_\mu^2 \; \sigma_a^2 \; \sigma_d^2)} on the diagonal and 0 elsewhere.

As above, the Bayes factor is used to compare the two models:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathrm{BF} = \frac{\mathsf{P}(Y | X, M1)}{\mathsf{P}(Y | X, M0)} = \frac{\mathsf{P}(Y | X, a \neq 0, d \neq 0)}{\mathsf{P}(Y | X, a=0, d=0)} = \frac{\int \mathsf{P}(B) \mathsf{P}(Y | X, B) \mathrm{d}B}{\int \mathsf{P}(\mu) \mathsf{P}(Y | X, \mu) \mathrm{d}\mu}}

The interesting point here is that there is no way to analytically calculate these integrals (marginal likelihoods). Therefore, we will use Laplace's method to approximate them, as in Guan & Stephens (2008).

Starting with the numerator:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y|X,M1) = \int \exp \left[ N \left( \frac{1}{N} \mathrm{ln} \, \mathsf{P}(B) + \frac{1}{N} \mathrm{ln} \, \mathsf{P}(Y | X, B) \right) \right] \mathsf{d}B}

Let's use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} to denote the function inside the exponential:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y|X,M1) = \int \exp \left( N \; f(B) \right) \mathsf{d}B}

The function Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} is defined by:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f: \mathbb{R}^3 \rightarrow \mathbb{R}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f(B) = \frac{1}{N} \left( -\frac{3}{2} \mathrm{ln}(2 \pi) - \frac{1}{2} \mathrm{ln}(|\Sigma_B|) - \frac{1}{2}(B^T \Sigma_B^{-1} B) \right) + \frac{1}{N} \sum_{i=1}^N \left( y_i \mathrm{ln}(p_i) + (1-y_i) \mathrm{ln}(1 - p_i) \right)}

This function will then be used to approximate the integral, like this:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathsf{P}(Y|X,M1) \approx N^{-3/2} (2 \pi)^{3/2} |H(B^\star)|^{-1/2} e^{N f(B^\star)}}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H} is the Hessian of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B^\star = (\mu^\star a^\star d^\star)^T} is the point at which Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} is maximized.

We therefore need two things: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B^\star} . Note that for both we need to calculate the first derivatives of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} . As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} is multi-dimensional (it takes values in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \mathbb{R}^3} ), we need to calculate its gradient.

In the following, some formulas from matrix calculus are sometimes required. In such cases, I will use the numerator layout.

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f = \frac{\partial f}{\partial B} = \left( \frac{\partial f}{\partial \mu} \; \frac{\partial f}{\partial a} \; \frac{\partial f}{\partial d} \right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f = - \frac{1}{2N} \frac{\partial B^T\Sigma_B^{-1}B}{\partial B} + \frac{1}{N} \sum_i \left( y_i \frac{\partial \mathrm{ln}(p_i)}{\partial B} + (1-y_i) \frac{\partial \mathrm{ln}(1-p_i)}{\partial B} \right)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f = - \frac{1}{N} B^T\Sigma_B^{-1} + \frac{1}{N} \sum_i \left( \frac{y_i}{p_i} - \frac{1-y_i}{1-p_i} \right) \frac{\partial p_i}{\partial B}}

A simple form for the first derivatives of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i} also exists when writing Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i = e^{X_i^tB} (1 + e^{X_i^tB})^{-1}} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \frac{\partial p_i}{\partial B} = \frac{\partial e^{X_i^TB}}{\partial B} (1 + e^{X_i^TB})^{-1} + e^{X_i^TB} \frac{\partial (1 + e^{X_i^TB})^{-1}}{\partial B}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \frac{\partial p_i}{\partial B} = e^{X_i^TB} \frac{\partial X_i^TB}{\partial B} (1 + e^{X_i^TB})^{-1} - e^{X_i^TB} (1 + e^{X_i^TB})^{-2} \frac{\partial (1 + e^{X_i^TB})}{\partial B}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \frac{\partial p_i}{\partial B} = p_i X_i^T - p_i (1 + e^{X_i^TB})^{-1} e^{X_i^TB} \frac{\partial X_i^TB}{\partial B}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \frac{\partial p_i}{\partial B} = p_i (1 - p_i) X_i^T}

This simplifies the gradient of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} into:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f = - \frac{1}{N} B^T\Sigma_B^{-1} + \frac{1}{N} \sum_i (y_i - p_i) X_i^T}

To find Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B^\star} , we set Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f(B^\star) = 0} . However, in this equation, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B^\star} is present not only alone but also in the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i} 's. As Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i} is a non-linear function of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B} , the equation can't be solved directly but an iterative procedure is required, typically a conjugate gradient method (as in Guan & Stephens) or Newton's method. The former only requires Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \nabla f} while the latter also requires Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H} . Remember that, in any case, we need Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H} for the Laplace approximation, so let's calculate it:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H = - \frac{1}{N} \Sigma_B^{-1} - \frac{1}{N} \sum_i \frac{\partial p_i}{\partial B} X_i^T}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H = - \frac{1}{N} \Sigma_B^{-1} - \frac{1}{N} \sum_i X_i^T p_i (1-p_i) X_i}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle H = - \frac{1}{N} (\Sigma_B^{-1} + X^T W X)}

where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle W} is the N x N matrix with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle p_i(1-p_i)} on the diagonal.

Note that all second derivatives of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} are strictly negative. Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} is globally convex, which means that it has a unique global maximum, at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle B^\star} . As a consequence, we have the right to use Laplace's method to approximate the integral of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} around its maximum.

implementation in R -> to do

finding the effect sizes and their std error: to do


  • Link between Bayes factor and P-value: see Wakefield (2008)

to do


  • Hierarchical model: pooling genes, learn weights for grid and genomic annotations, see Veyrieras et al (PLoS Genetics, 2010)

to do


  • Multiple SNPs with LD: joint analysis of multiple SNPs, handle correlation between them, see Guan & Stephens (Annals of Applied Statistics, 2011) for MCMC, see Carbonetto & Stephens (Bayesian Analysis, 2012) for Variational Bayes

to do


  • Confounders in phenotype: it is well known in molecular biology that any experiment involving several assays (e.g. measuring gene expression levels with a DNA microarray) suffers from "unknown confounders", the most (in)famous being the so-called "batch effects".

For instance, samples from individual 1 and 2 are correlated with each other because they were treated another day than all the other samples. Such a correlations has nothing to do with the genotype at a given SNP (in most cases). However, the core model, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_i = \mu + \beta g_i + \epsilon_i} assumes that the errors are uncorrelated between individuals: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \epsilon_i \overset{\mathrm{i.i.d}}{\sim} \mathcal{N}(0,\tau^{-1})} . If this is not the case, i.e. if the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_i} 's are correlated but this correlation has nothing to do with the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g_i} 's, then more variance in the errors won't be accounted for, and we'll loose power when trying to detect weak, yet non-zero Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta} .

An intuitive way of removing these confounders is to realize that we can use all gene expression levels to try to identify them. Indeed, batch effects are very likely to affect all genes in a sample (though possibly at different magnitudes). As the effect of the confounders are, as a first approximation, typically much bigger than the effect of a SNP genotype, we can try to learn the confounders using all gene expression levels, and only them. So let's put all of them into a Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle G \times N} matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle Y_1} with genes in rows and individuals in columns.

For the moment, the data are expressed in the standard basis, i.e. the basis of the observations. But some confounders are present in these data, they contribute with noise and redundancy and hence dilute the signal. The idea is, first, to identify a new basis which will correspond to a "mix" of the original samples (e.g. one component of this "mix" may correspond to the day at which the samples were processed), and second, to remove these components from the data in order to only keep the signal.

to be continued

see also factor analysis, see Stegle et al (PLoS Computational Biology, 2010)


  • Confounders in genotype: mainly pop structure and genetic relatedness, linear mixed model (LMM), see Zhou & Stephens (Nature Genetics, 2012)

to do


  • Discrete phenotype: count data (e.g. from RNA-seq), Poisson-like likelihood, generalized linear model (GLM), see Sun (Biometrics, 2012)

to do


  • Multiple phenotypes: matrix-variate distributions, see Flutre et al (PLoS Genetics, 2013), Wen & Stephens (Annals of Applied Statistics, 2014), Wen (Biometrics, 2014)

to do


  • Non-independent genes: enrichment in known pathways, learn "modules", distributions on networks

to do


  • References:
    • Servin & Stephens (PLoS Genetics, 2007)
    • Guan & Stephens (PLoS Genetics, 2008)
    • Stephens & Balding (Nature Reviews Genetics, 2009)