Difference between revisions of "User:Timothee Flutre/Notebook/Postdoc/2011/06/28"

From OpenWetWare
Jump to: navigation, search
(Simple linear regression: add regression with multiple predictors)
(Linear regression by ordinary least squares: improv simul with PVE + expand variance geno)
Line 76: Line 76:
  
  
* '''Simulation with a given PVE''': when testing an inference model, the first step is usually to simulate data. However, how do we choose the parameters? In our case (linear regression: <math>y = \mu + \beta g + \epsilon</math>), it is frequent to fix the proportion of variance in <math>y</math> explained by <math>\beta g</math>:
+
* '''Simulation with a given PVE''': when testing an inference model, the first step is usually to simulate data. However, how do we choose the parameters? In our case, the model is <math>y = \mu + \beta g + \epsilon</math>). Therefore, the variance of <math>y</math> can be decomposed like this:
  
<math>PVE = \frac{V(\beta g)}{V(y)} = \frac{V(\beta g)}{V(\beta g) + V(\epsilon)}</math> with <math>V(\beta g) = \frac{1}{N}\sum_{n=1}^N (\beta g_n - \bar{\beta g})^2</math> and <math>V(\epsilon) = \sigma^2</math>
+
<math>V(y) = V(\mu + \beta g + \epsilon) = V(\mu) + V(\beta g) + V(\epsilon) = \beta^2 V(g) + \sigma^2</math>
  
This way, by also fixing <math>\beta</math>, it is easy to calculate the corresponding <math>\sigma</math>:
+
The most intuitive way to simulate data is therefore to fix the proportion of variance in <math>y</math> explained by the genotype, for instance <math>PVE=60%</math>, as well as the standard deviation of the errors, typically <math>\sigma=1</math>. From this, we can calculate the corresponding effect size <math>\beta</math> of the genotype:
  
<math>\sigma = \sqrt{\frac{1}{N}\sum_{n=1}^N (\beta g_n - \bar{\beta g})^2 \frac{1 - PVE}{PVE}}</math>
+
<math>PVE = \frac{V(\beta g)}{V(y)}</math>
  
Here is some R code implementing this:
+
Therefore:
 +
<math>\beta = \pm \sigma \sqrt{\frac{PVE}{(1 - PVE) * V(g)}}</math>
 +
 
 +
Note that <math>g</math> is the random variable corresponding to the genotype encoded in allele dose, such that it is equal to 0, 1 or 2 copies of the minor allele. For our simulation, we will fix the minor allele frequency <math>f</math> (eg. <math>f=0.3</math>) and we will assume Hardy-Weinberg equilibrium. Then <math>g</math> is distributed according to a binomial distribution with 2 trials for which the probability of success is <math>f</math>. As a consequence, its variance is <math>V(g)=2f(1-f)</math>.
 +
 
 +
Here is some R code implementing all this:
  
 
  <nowiki>
 
  <nowiki>
 
set.seed(1859)
 
set.seed(1859)
N <- 100
+
N <- 100 # sample size
mu <- 5
+
mu <- 4
g <- sample(x=0:2, size=N, replace=TRUE, prob=c(0.5, 0.3, 0.2)) # MAF=0.2
+
pve <- 0.6
beta <- 0.5
+
sigma <- 1
pve <- 0.8
+
maf <- 0.3
beta.g.bar <- mean(beta * g)
+
beta <- sigma * sqrt(pve / ((1 - pve) * 2 * maf * (1 - maf))) # 1.88
sigma <- sqrt((1/N) * sum((beta * g - beta.g.bar)^2) * (1-pve) / pve) # 0.18
+
g <- sample(x=0:2, size=N, replace=TRUE, prob=c(maf^2, 2*maf*(1-maf), (1-maf)^2))
 
y <- mu + beta * g + rnorm(n=N, mean=0, sd=sigma)
 
y <- mu + beta * g + rnorm(n=N, mean=0, sd=sigma)
 +
ols <- lm(y ~ g)
 +
summary(ols) # muhat=3.5, betahat=2.1, R2=0.64
 +
sqrt(mean(ols$residuals^2)) # sigmahat = 0.98
 
plot(x=0, type="n", xlim=range(g), ylim=range(y),
 
plot(x=0, type="n", xlim=range(g), ylim=range(y),
     xlab="genotypes (allele dose)", ylab="phenotypes",
+
     xlab="genotypes", ylab="phenotypes",
 
     main="Simple linear regression")
 
     main="Simple linear regression")
 
for(i in unique(g))
 
for(i in unique(g))
 
   points(x=jitter(g[g == i]), y=y[g == i], col=i+1, pch=19)
 
   points(x=jitter(g[g == i]), y=y[g == i], col=i+1, pch=19)
ols <- lm(y ~ g)
 
summary(ols) # muhat=5.01, betahat=0.46, R2=0.779
 
 
abline(a=coefficients(ols)[1], b=coefficients(ols)[2])
 
abline(a=coefficients(ols)[1], b=coefficients(ols)[2])
 
</nowiki>
 
</nowiki>

Revision as of 17:57, 14 August 2012

Owwnotebook icon.png Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>

Linear regression by ordinary least squares

  • Data: let's assume that we obtained data from Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle N} individuals. We note Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y_1,\ldots,y_N} the (quantitative) phenotypes (eg. expression level at a given gene), and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g_1,\ldots,g_N} the genotypes at a given SNP. We want to assess their linear relationship.
  • Model: to start with, we use a simple linear regression (univariate phenotype, single predictor).

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \forall n \in {1,\ldots,N}, \; y_n = \mu + \beta g_n + \epsilon_n \text{ with } \epsilon_n \sim N(0,\sigma^2)}

In matrix notation:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y = X \theta + \epsilon} with Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \epsilon \sim N_N(0,\sigma^2 I_N)} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \theta^T = (\mu, \beta)}

  • Use only summary statistics: most importantly, we want the following estimates: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\beta}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle se(\hat{\beta})} (its standard error) and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\sigma}} . In the case where we don't have access to the original data (eg. because genotypes are confidential) but only to some summary statistics (see below), it is still possible to calculate the estimates.

Here is the ordinary-least-square (OLS) estimator of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \theta} :

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\theta} = (X^T X)^{-1} X^T Y}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \left( \begin{bmatrix} 1 & \ldots & 1 \\ g_1 & \ldots & g_N \end{bmatrix} \begin{bmatrix} 1 & g_1 \\ \vdots & \vdots \\ 1 & g_N \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & \ldots & 1 \\ g_1 & \ldots & g_N \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \begin{bmatrix} N & \sum_n g_n \\ \sum_n g_n & \sum_n g_n^2 \end{bmatrix}^{-1} \begin{bmatrix} \sum_n y_n \\ \sum_n g_n y_n \end{bmatrix} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \frac{1}{N \sum_n g_n^2 - (\sum_n g_n)^2} \begin{bmatrix} \sum_n g_n^2 & - \sum_n g_n \\ - \sum_n g_n & N \end{bmatrix} \begin{bmatrix} \sum_n y_n \\ \sum_n g_n y_n \end{bmatrix} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \begin{bmatrix} \hat{\mu} \\ \hat{\beta} \end{bmatrix} = \frac{1}{N \sum_n g_n^2 - (\sum_n g_n)^2} \begin{bmatrix} \sum_n g_n^2 \sum_n y_n - \sum_n g_n \sum_n g_n y_n \\ - \sum_n g_n \sum_n y_n + N \sum_n g_n y_n \end{bmatrix} }

Let's now define 4 summary statistics, very easy to compute:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \bar{y} = \frac{1}{N} \sum_{n=1}^N y_n}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \bar{g} = \frac{1}{N} \sum_{n=1}^N g_n}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g^T g = \sum_{n=1}^N g_n^2}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g^T y = \sum_{n=1}^N g_n y_n}

This allows to obtain the estimate of the effect size only by having the summary statistics available:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\beta} = \frac{g^T y - N \bar{g} \bar{y}}{g^T g - N \bar{g}^2}}

The same works for the estimate of the standard deviation of the errors:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\sigma}^2 = \frac{1}{N-r}(y - X\hat{\theta})^T(y - X\hat{\theta})}

We can also benefit from this for the standard error of the parameters:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(\hat{\theta}) = \hat{\sigma}^2 (X^T X)^{-1}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(\hat{\theta}) = \hat{\sigma}^2 \frac{1}{N g^T g - N^2 \bar{g}^2} \begin{bmatrix} g^Tg & -N\bar{g} \\ -N\bar{g} & N \end{bmatrix} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(\hat{\beta}) = \frac{\hat{\sigma}^2}{g^Tg - N\bar{g}^2}}


  • Simulation with a given PVE: when testing an inference model, the first step is usually to simulate data. However, how do we choose the parameters? In our case, the model is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y = \mu + \beta g + \epsilon} ). Therefore, the variance of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y} can be decomposed like this:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(y) = V(\mu + \beta g + \epsilon) = V(\mu) + V(\beta g) + V(\epsilon) = \beta^2 V(g) + \sigma^2}

The most intuitive way to simulate data is therefore to fix the proportion of variance in Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle y} explained by the genotype, for instance Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle PVE=60%} , as well as the standard deviation of the errors, typically Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma=1} . From this, we can calculate the corresponding effect size Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta} of the genotype:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle PVE = \frac{V(\beta g)}{V(y)}}

Therefore: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \beta = \pm \sigma \sqrt{\frac{PVE}{(1 - PVE) * V(g)}}}

Note that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g} is the random variable corresponding to the genotype encoded in allele dose, such that it is equal to 0, 1 or 2 copies of the minor allele. For our simulation, we will fix the minor allele frequency Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} (eg. Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f=0.3} ) and we will assume Hardy-Weinberg equilibrium. Then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle g} is distributed according to a binomial distribution with 2 trials for which the probability of success is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle f} . As a consequence, its variance is Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(g)=2f(1-f)} .

Here is some R code implementing all this:

set.seed(1859)
N <- 100 # sample size
mu <- 4
pve <- 0.6
sigma <- 1
maf <- 0.3
beta <- sigma * sqrt(pve / ((1 - pve) * 2 * maf * (1 - maf))) # 1.88
g <- sample(x=0:2, size=N, replace=TRUE, prob=c(maf^2, 2*maf*(1-maf), (1-maf)^2))
y <- mu + beta * g + rnorm(n=N, mean=0, sd=sigma)
ols <- lm(y ~ g)
summary(ols) # muhat=3.5, betahat=2.1, R2=0.64
sqrt(mean(ols$residuals^2)) # sigmahat = 0.98
plot(x=0, type="n", xlim=range(g), ylim=range(y),
     xlab="genotypes", ylab="phenotypes",
     main="Simple linear regression")
for(i in unique(g))
  points(x=jitter(g[g == i]), y=y[g == i], col=i+1, pch=19)
abline(a=coefficients(ols)[1], b=coefficients(ols)[2])


  • Several predictors: let's now imagine that we also know the gender of the N sampled individuals. We hence want to account for that in our estimate of the genotypic effect. In matrix notation, we still have the same model Y = XB + E with Y an Nx1 vector, X an Nx3 matrix with 1's in the first column, the genotypes in the second and the genders in the third, B a 3x1 vector and E an Nx1 vector following a multivariate Normal distribution centered on 0 and with covariance matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \sigma^2 I_N} .

As above, we want Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{B}} , Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\sigma}} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(\hat{B})} . To efficiently get them, we start with the singular value decomposition of X:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X = U D V^T}

This allows us to get the Moore-Penrose pseudoinverse matrix of X:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X^+ = (X^TX)^{-1}X^T}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle X^+ = V D^{-1} U^T}

From this, we get the OLS estimate of the effect sizes:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{B} = X^+ Y}

Then it's straightforward to get the residuals:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{E} = Y - X \hat{B}}

With them we can calculate the estimate of the error variance:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle \hat{\sigma} = \sqrt{\frac{1}{N-3} \hat{E}^T \hat{E}}}

And finally the standard errors of the estimates of the effect sizes:

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://api.formulasearchengine.com/v1/":): {\displaystyle V(\hat{B}) = \hat{\sigma}^2 V D^{-2} V^T}

We can check this with some R code:

## simulate the data
set.seed(1859)
N <- 100
mu <- 5
Xg <- sample(x=0:2, size=N, replace=TRUE, prob=c(0.5, 0.3, 0.2)) # genotypes
beta.g <- 0.5
Xc <- sample(x=0:1, size=N, replace=TRUE, prob=c(0.7, 0.3)) # gender
beta.c <- 0.3
pve <- 0.8
betas.gc.bar <- mean(beta.g * Xg + beta.c * Xc) # 0.405
sigma <- sqrt((1/N) * sum((beta.g * Xg + beta.c * Xc - betas.gc.bar)^2) *
              (1-pve) / pve) # 0.2
y <- mu + beta.g * Xg + beta.c * Xc + rnorm(n=N, mean=0, sd=sigma)

## perform the OLS analysis with the SVD of X
X <- cbind(rep(1,N), Xg, Xc)
Xp <- svd(x=X)
B.hat <- Xp$v %*% diag(1/Xp$d) %*% t(Xp$u) %*% y
E.hat <- y - X %*% B.hat
sigma.hat <- as.numeric(sqrt((1/(N-3)) * t(E.hat) %*% E.hat)) # 0.211
var.theta.hat <- sigma.hat^2 * Xp$v %*% diag((1/Xp$d)^2) %*% t(Xp$v)
sqrt(diag(var.theta.hat)) # 0.0304 0.0290 0.0463

## check all this
ols <- lm(y ~ Xg + Xc)
summary(ols) # muhat=4.99+-0.03, beta.g.hat=0.52+--.-29, beta.c.hat=0.24+-0.046, R2=0.789

Such an analysis can also be done easily in a custom C/C++ program thanks to the GSL (here).