User:ShLo: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
(Redirecting to Shlo/notebook)
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
Stephanie Lo <br>
#redirect[[shlo/notebook]]
Harvard College 2010
<Br><Br>
1885 Harvard Yard Mail Center<br>
Cambridge, MA 02138
<br><br>
 
I have always had a passion for sciences, particularly chemistry, and hope to pursue a joint concentration in Molecular and Cellular Biology and Economics. Eventually, I plan to apply for an MD/PhD program and specialize in digestive disorders.
<br><br>
 
<b> Latest news: </b><br>
I'll be making a presentation at the next iGEM meeting on engineering <i>E.coli</i> to efficiently produce EtOH as well as adaptamers (past studies of, and potential applications of). Adaptamers haven't been at the forefront of discussion lately, but they're great for labs of the iGEM size, and have an array of potential uses. <br>
[http://openwetware.org/wiki/Image:SLoAdaptamerHandout.doc Presentation Handout]
<br>
<br>
 
 
== What I'm Currently Reading: ==
<br>
<i> Note: I'm not formatting my citations correctly, I know. If there is any confusion, please let me know. Also, though some of the articles do not have links, they should be readily accessible via PubMed with a Harvard login. </i>
<br><br>
 
<b>Engineering for EtOH production</b>
<br><br>
 
Ingram L, et al. 1987. Genetic engineering of ethanol production in E. coli. Applied and Environmental Microbiology. 53, 10: 2420-2425. [http://aem.asm.org.ezp1.harvard.edu/cgi/reprint/53/10/2420?view=long&pmid=3322191 Full text]
<br>
Perhaps one of the oldest papers, but also one of the best in terms of examining the basic engineering concepts that the other papers seem to take for granted.
 
<br>
Ohta K, et al. 1991. Genetic Improvement of E. Coli for Ethanol production: chromosomal integration of Z. mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Applied and Env Microbio, 57, 4: 893-900. [http://aem.asm.org.ezp1.harvard.edu/cgi/reprint/57/4/893?view=long&pmid=2059047 full text]<br>
Looks intriguing. Again, relatively old, but I think it will emphasize basic manipulations that have been experimentally performed - which is good if we plan to look into this. I haven't read this one fully yet, but I'll update if I do. <br><br>
 
 
Rao K, et al. 2007. Enhanced ethanol fermentation of brewery wastewater using genetically modified strain E. coli KO11.<br>
Two major results should be emphasized: yeast consistently produced EtOH more rapidly; commericial enzymes (alpha-amylase and pectinase) enhanced EtOH yields in both yeast and e.coli. As a side note, I'm finding it interesting that most of the newer articles (such as this one) seem to advocate using engineered yeast rather than e.coli, while many earlier studies (early 1990s) seemed to find that E. coli were equally, or more, efficient. I'll keep an eye out for this trend as I continue reading. <br>
<br>
Stephanopoulos, G. Challenges in engineering microbes for biofuels production. 2007, Science, 315, 801. <br>
Easily readable, but not extremely pertinent to the engineering of <i> E. coli</i> that we've been considering.
<br>
<br>Service, R. CELLULOSIC ETHANOL: Biofuel Researchers Prepare to Reap a New Harvest. <i> Science </i> 16 March 2007. Vol. 315, no 5818, 1488-1491.[http://www.sciencemag.org.ezp1.harvard.edu/cgi/content/full/315/5818/1488 Full Text; requires login]
<br> This paper isn't as mechanism-based as the Aristou paper (cited below), but provides a nice overview of the history of ethanol use, why energy is a concern, etc. It seems to be a nice background for the general public, and provides a nice introduction to the field.
<br>
<br>
Aristidou, A and M Penttila. Metabolic engineering applications to renewable resource utilization. <i> Science Direct: Current Opinion in Biotechnology </i> 1 April 2000. Vol 11, no 2, 187-198. [http://www.sciencedirect.com.ezp1.harvard.edu/science?_ob=ArticleURL&_udi=B6VRV-40199MT-J&_user=209690&_coverDate=04%2F01%2F2000&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000014438&_version=1&_urlVersion=0&_userid=209690&md5=c0db238ba5445c41b1bda11384ac0a2f Full text]
<br> This review focuses on the bioconversion of the pentose fractions into ethanol and suggests use of biocatalysts (such as bacteria and yeast) to assist in this slow-step in the conversion of sugars into useful products.
<br><br>
<b>General</b>
<br><br>
 
Current Research Activity in Biosensors. Nakamura et al, 2003, Analytical Bioanalytical Chem. <br>
A really great overview of some potential applications of biosensors, including electrochemical sensors, detergent sensors, acid rain sensors, red tide, cyanide sensors, E. coli used for gas toxicity monitoring (see reference 276 of the paper - I intend to look into this more), and food sensors to detect glucose, sucrose, and lactose.
<br>
 
[http://openwetware.org/wiki/IGEM:Harvard/2007 Harvard iGEM]

Latest revision as of 09:48, 12 July 2007

Redirect to: