User:ShLo: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
No edit summary
Line 14: Line 14:
<br>
<br>
<br>  
<br>  
Aristou, A and M Penttila. Metabolic engineering applications to renewable resource utilization. <i> Science Direct: Current Opinion in Biotechnology </i> 1 April 2000. Vol 11, no 2, 187-198. [http://www.sciencedirect.com.ezp1.harvard.edu/science?_ob=ArticleURL&_udi=B6VRV-40199MT-J&_user=209690&_coverDate=04%2F01%2F2000&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000014438&_version=1&_urlVersion=0&_userid=209690&md5=c0db238ba5445c41b1bda11384ac0a2f May also require login]
Aristou, A and M Penttila. Metabolic engineering applications to renewable resource utilization. <i> Science Direct: Current Opinion in Biotechnology </i> 1 April 2000. Vol 11, no 2, 187-198. [http://www.sciencedirect.com.ezp1.harvard.edu/science?_ob=ArticleURL&_udi=B6VRV-40199MT-J&_user=209690&_coverDate=04%2F01%2F2000&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000014438&_version=1&_urlVersion=0&_userid=209690&md5=c0db238ba5445c41b1bda11384ac0a2f Full text]
<br> This review focuses on the bioconversion of the pentose fractions into ethanol and suggests use of biocatalysts (such as bacteria and yeast) to assist in this slow-step in the conversion of sugars into useful products.  
<br> This review focuses on the bioconversion of the pentose fractions into ethanol and suggests use of biocatalysts (such as bacteria and yeast) to assist in this slow-step in the conversion of sugars into useful products.  
<br>


[http://openwetware.org/wiki/IGEM:Harvard/2007 Harvard iGEM]
[http://openwetware.org/wiki/IGEM:Harvard/2007 Harvard iGEM]

Revision as of 16:45, 1 April 2007

Stephanie Lo
Harvard College 2010

1885 Harvard Yard Mail Center
Cambridge, MA 02138

I have always had a passion for sciences, particularly chemistry, and hope to pursue a joint concentration in Molecular and Cellular Biology and Economics. Eventually, I plan to apply for an MD/PhD program and specialize in digestive disorders.

What I'm Currently Reading:
Service, R. CELLULOSIC ETHANOL: Biofuel Researchers Prepare to Reap a New Harvest. Science 16 March 2007. Vol. 315, no 5818, 1488-1491.Full Text; requires login
This paper isn't as mechanism-based as the Aristou paper (cited below), but provides a nice overview of the history of ethanol use, why energy is a concern, etc. It seems to be a nice background for the general public, and provides a nice introduction to the field.

Aristou, A and M Penttila. Metabolic engineering applications to renewable resource utilization. Science Direct: Current Opinion in Biotechnology 1 April 2000. Vol 11, no 2, 187-198. Full text
This review focuses on the bioconversion of the pentose fractions into ethanol and suggests use of biocatalysts (such as bacteria and yeast) to assist in this slow-step in the conversion of sugars into useful products.


Harvard iGEM