User:Pranav Rathi/Notebook/OT/2011/03/01/Laser Shutter .2

From OpenWetWare
< User:Pranav Rathi‎ | Notebook‎ | OT‎ | 2011‎ | 03‎ | 01
Revision as of 15:34, 9 August 2011 by Pranav Rathi (talk | contribs) (Construction)
Jump to: navigation, search

The full detail is coming soon.


Motivation behind designing the shutter is speed, accuracy and variability (time). In our optical tweezers we need to center the trap over the tethered bead, to get the geometry right(because this affects the force measurement)and make our feed-back program run. To center the tether we need to turn the laser intensity on/off quickly for variable time intervals. To do this we used to use AOM, because it’s extremely quick (nsec) and variable. So I needed some-thing which can replace this AOM function. This shutter does it exact. It is fast with opening time of 4 and closing time 2 μsec. Since the shutter runs on/with the active voltage (controlled by the toggle foot switch), it remains active with the applied voltage, with the freedom to chose any active time. The speed of the shutter can also be controlled. In design the laser passes through an aperture, and the only moving part is the cylinder. No gears, and no electronics in the actual shutter, makes this design very stable and accurate, even under the heat produced by the laser beam. This shutter needs no special power supply, it can be run through a cell phone charge with an output of roughly 300mA/5V. Cost and construction time is also important. With this design, a shutter can be prepared under $40 with 10 hours of construction time (10 x 25 (hourly wage of a technician)=$250+40=$290). Still better than many commercially available shutter systems with same performance.

Design & Construction


There are three major parts of the system.

  • Shutter.
  • Control box.
  • Power supply.

The components used:


  • 12V DC motor
  • Wood rotation stage
  • Spring with torque of 2e-6 N m
  • Rubber padding
  • Pillar Post Extension, Length=1" from Thorlabs (shutter cylinder)
  • 30mm Cage Plate Optic Mount from Thorlabs
  • Post-holder, base-plate ext...

Control Box

  • 1 power jack M&F
  • 1 1/4" mono Panel-Mount Audio Jack M&F
  • 1 Foot Paddle
  • 1 100Ω pot with, 1 220Ω resistor
  • 1 on/off toggle switch
  • 1 LED
  • 1 box enclosure
  • some connection wires, solder gun and solder wire

Power Supply

Any power-supply which can provide 300mA at 5V and above. The motor torque is power dependent and the shutter speed is resorting spring's stiffness (torque) dependent. So choose the spring carefully before decide on the power supply. I would recommend a variable power-supply which can be bought easily from any where.


The buildup is divided is the following categories. In the start make sure that you have a good set of screw driver, players, wire cutter & stripper and solder.


I will start with the choice of the motor. A 12V DC motor is a good choice because it can provide a wide rang of torques. The motor and the spring works against each other so it important to have the right set. So choose a 12V DC motor with a shaft length of at least 15mm. Mount the motor on the cage plate as shown in the picture, you will need 4/40 screws to tight it. once this is done, unscrew and take the motor out.

Now next task is to choose the right spring. The spring should be half the length of the shaft and the shaft should easily fit through the spring.

Control Box

Power Supply



Full Shutter System
Control box
Shutter different view
Control box different view