Difference between revisions of "User:Moira M. Esson/Notebook/CHEM-581/2013/04/19"

From OpenWetWare
Jump to: navigation, search
(Entry title)
(X-ray)
 
(4 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
* Run X-ray diffraction on a plain safflower oil sample, a plain PVA MW 130 sample, and a PVA 146 microsphere sample that ended up becoming a hydrogel.
 
* Run X-ray diffraction on a plain safflower oil sample, a plain PVA MW 130 sample, and a PVA 146 microsphere sample that ended up becoming a hydrogel.
 
* Finish running DSC on a Rhodamine 6G sample(this was unable to be run last time due to lack of gas).
 
* Finish running DSC on a Rhodamine 6G sample(this was unable to be run last time due to lack of gas).
 +
<br>
 +
==Pressure Testing==
 +
*The general protocol for pressure testing described on [[User:Moira_M._Esson/Notebook/CHEM-581/2013/04/17|2013/04/17]] was followed.
 +
Figure 1. Pressure testing of prepared microspheres.
 +
<br>
 +
[[Image:Pressure test micros.png]]
 +
<br>
 +
* It appears as if these microspheres exhibit some sheer pressure response due to the presence of a slight R6G peak.
  
 +
==X-ray==
 +
General Protocol:
 +
# Use a Kimwipe and acetone to thoroughly clean the low background sample holder
 +
# Insert Sample into the low background holder. Note: Must make sure that the sample is completely flat and that the particle sample  size is very small. If the sample is too large, use a mortar and pestle to completely grind the sample
 +
# Turn on the chiller
 +
# Turn on Miniflex II. This is the white button on the machine
 +
# Turn on X-ray. The machine will be on when the red lights on the button labeled x-ray light up
 +
# Using a Geiger counter, test the radiation from the machine
 +
# Set sample in sample holder and record sample holder number
 +
# Close the door to the x-ray
 +
# Open software on computer
 +
<br>
 +
Figure 1. X-ray diffraction spectrum of a 50:50 ratio PVA130:110% Laponite
 +
<br>
 +
[[Image:X-ray 50-50 130K 110LP micros.png]]
 +
<br>
 +
Figure 2. X-ray diffraction spectrum of PVA 130 microspheres
 +
<br>
 +
[[Image:X-ray diffraction PVA 130 micros.png]]
 +
<br>
 +
Table 1. All X-ray data
 +
<br>
 +
{| {{table}}
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|'''2Ѳ (degree)'''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
|-
 +
| Sample Name||Peak 1||Peak 2||Peak 3||Peak 4||Peak 5
 +
|-
 +
| NaMT||7.33||19.77||28.52||35.16||
 +
|-
 +
| Laponite||6.92||19.70||27.90||35.30||
 +
|-
 +
| 110% CEC NaMT w/ DMHXLBR||6.76||19.98||27.27||||
 +
|-
 +
| 110% CEC Laponite w/ DMHXLBR||6.61||19.79||27.10||35.28||
 +
|-
 +
| PVA 130K Film||4.33||2.16||||||
 +
|-
 +
| PVA 130K Microspheres||4.52||19.82||||||
 +
|-
 +
| 50:50 PVA 130K NaMT Film||3.27||20.43||26.61||||
 +
|-
 +
| 50:50 PVA 130K NaMT Microspheres||4.42||19.71||||||
 +
|-
 +
| 50:50 PVA 130K 110% NaMT Film||2.39||5.53||9.68||19.71||27.27
 +
|-
 +
| 50:50 PVA 130K 110% NaMT Microspheres||19.56||||||||
 +
|-
 +
| 50:50 PVA 130K Laponite Film||3.72||4.44||||||
 +
|-
 +
| 50:50 PVA 130K Laponite Microspheres||19.87||||||||
 +
|-
 +
| 50:50 PVA 130K 110% Laponite Film||6.49||19.57||||||
 +
|-
 +
| 50:50 PVA 130K 110% Laponite Microspheres||19.45||||||||
 +
|-
 +
|}
 +
<br>
 +
Table 2. All X-ray data continued
 +
<br>
 +
{| {{table}}
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|'''D spacing'''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
| align="center" style="background:#f0f0f0;"|''''''
 +
|-
 +
| Sample Name||Peak 1||Peak 2||Peak 3||Peak 4||Peak 5
 +
|-
 +
| NaMT||12.05||4.48||3.13||2.55||
 +
|-
 +
| Laponite||12.76||4.50||3.19||2.54||
 +
|-
 +
| 110% CEC NaMT w/ DMHXLBR||13.06||4.44||3.27||||
 +
|-
 +
| 110% CEC Laponite w/ DMHXLBR||13.37||4.48||3.29||2.54||
 +
|-
 +
| PVA 130K Film||20.48||41.74||||||
 +
|-
 +
| PVA 130K Microspheres||19.50||4.48||||||
 +
|-
 +
| 50:50 PVA 130K NaMT Film||26.97||4.34||3.35||||
 +
|-
 +
| 50:50 PVA 130K NaMT Microspheres||20.00||4.50||||||
 +
|-
 +
| 50:50 PVA 130K 110% NaMT Film||36.90||16.00||9.13||4.50||3.27
 +
|-
 +
| 50:50 PVA 130K 110% NaMT Microspheres||4.53||||||||
 +
|-
 +
| 50:50 PVA 130K Laponite Film||23.70||20.00||||||
 +
|-
 +
| 50:50 PVA 130K Laponite Microspheres||4.46||||||||
 +
|-
 +
| 50:50 PVA 130K 110% Laponite Film||13.60||4.53||||||
 +
|-
 +
| 50:50 PVA 130K 110% Laponite Microspheres||4.56||||||||
 +
|}
  
  

Latest revision as of 14:30, 27 April 2013

Owwnotebook icon.png Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>      </html>

Objectives

  • Perform pressure testing of microspheres.
  • Run X-ray diffraction on a plain safflower oil sample, a plain PVA MW 130 sample, and a PVA 146 microsphere sample that ended up becoming a hydrogel.
  • Finish running DSC on a Rhodamine 6G sample(this was unable to be run last time due to lack of gas).


Pressure Testing

  • The general protocol for pressure testing described on 2013/04/17 was followed.

Figure 1. Pressure testing of prepared microspheres.
Pressure test micros.png

  • It appears as if these microspheres exhibit some sheer pressure response due to the presence of a slight R6G peak.

X-ray

General Protocol:

  1. Use a Kimwipe and acetone to thoroughly clean the low background sample holder
  2. Insert Sample into the low background holder. Note: Must make sure that the sample is completely flat and that the particle sample size is very small. If the sample is too large, use a mortar and pestle to completely grind the sample
  3. Turn on the chiller
  4. Turn on Miniflex II. This is the white button on the machine
  5. Turn on X-ray. The machine will be on when the red lights on the button labeled x-ray light up
  6. Using a Geiger counter, test the radiation from the machine
  7. Set sample in sample holder and record sample holder number
  8. Close the door to the x-ray
  9. Open software on computer


Figure 1. X-ray diffraction spectrum of a 50:50 ratio PVA130:110% Laponite
X-ray 50-50 130K 110LP micros.png
Figure 2. X-ray diffraction spectrum of PVA 130 microspheres
X-ray diffraction PVA 130 micros.png
Table 1. All X-ray data

' 2Ѳ (degree) ' ' ' '
Sample Name Peak 1 Peak 2 Peak 3 Peak 4 Peak 5
NaMT 7.33 19.77 28.52 35.16
Laponite 6.92 19.70 27.90 35.30
110% CEC NaMT w/ DMHXLBR 6.76 19.98 27.27
110% CEC Laponite w/ DMHXLBR 6.61 19.79 27.10 35.28
PVA 130K Film 4.33 2.16
PVA 130K Microspheres 4.52 19.82
50:50 PVA 130K NaMT Film 3.27 20.43 26.61
50:50 PVA 130K NaMT Microspheres 4.42 19.71
50:50 PVA 130K 110% NaMT Film 2.39 5.53 9.68 19.71 27.27
50:50 PVA 130K 110% NaMT Microspheres 19.56
50:50 PVA 130K Laponite Film 3.72 4.44
50:50 PVA 130K Laponite Microspheres 19.87
50:50 PVA 130K 110% Laponite Film 6.49 19.57
50:50 PVA 130K 110% Laponite Microspheres 19.45


Table 2. All X-ray data continued

' D spacing ' ' ' '
Sample Name Peak 1 Peak 2 Peak 3 Peak 4 Peak 5
NaMT 12.05 4.48 3.13 2.55
Laponite 12.76 4.50 3.19 2.54
110% CEC NaMT w/ DMHXLBR 13.06 4.44 3.27
110% CEC Laponite w/ DMHXLBR 13.37 4.48 3.29 2.54
PVA 130K Film 20.48 41.74
PVA 130K Microspheres 19.50 4.48
50:50 PVA 130K NaMT Film 26.97 4.34 3.35
50:50 PVA 130K NaMT Microspheres 20.00 4.50
50:50 PVA 130K 110% NaMT Film 36.90 16.00 9.13 4.50 3.27
50:50 PVA 130K 110% NaMT Microspheres 4.53
50:50 PVA 130K Laponite Film 23.70 20.00
50:50 PVA 130K Laponite Microspheres 4.46
50:50 PVA 130K 110% Laponite Film 13.60 4.53
50:50 PVA 130K 110% Laponite Microspheres 4.56