User:Moira M. Esson/Notebook/CHEM-581/2013/02/13

From OpenWetWare
< User:Moira M. Esson‎ | Notebook‎ | CHEM-581‎ | 2013‎ | 02
Revision as of 07:31, 15 February 2013 by Moira M. Esson (talk | contribs) (Objectives)
Jump to: navigation, search
Owwnotebook icon.png Project name <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page
<html><img src="/images/c/c3/Resultset_previous.png" border="0" /></html>Previous entry<html>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</html>Next entry<html><img src="/images/5/5c/Resultset_next.png" border="0" /></html>


  1. Determine the lower and upper limit of detection of Rhodamine 6G on the fluorimeter.
  2. Run fluoroscopy of all hydrogel samples that were placed in distilled H2O to soak on 2013/02/06.
  3. Run diffusion test on prepared microspheres(PVOH 146K MW and Lamponite clay in a 90:10 ratio) with Rhodamine 6G dye added.


  • The microspheres prepared on 2013/02/08 did not form microsphere structures. After placing on the lyophilizer for over 48 hours, a large, solid clump of pure white material formed. This indicates that the emulsion that was prepared was not sufficient for the precipitaiton of microsphere structures. A mortar and pestle was used to grind the large PVOH and clay solid in an attempt to create microsphere structures. DSC will be run of these structures.
  • The two hydrogels prepared on 2013/02/08 were removed from the freezer to thaw for their last freeze-thaw cycle. During the next lab session, these hydrogels will be placed in distilled H2O to soak.
  • After observation of the hydrogels that were allowed to soak in Rhodamine 6G 1μM solution, it was apparent that the concentration of Rhodamine 6G was enough in the gel. A small, second fraction of 3mL of 1μM Rhodamine 6G was added to the hydrogels. The hydrogels will be allowed to soak until 02/15/13, when diffusion tests will be run on the samples.