Difference between revisions of "User:Kchang17/scratch"

From OpenWetWare
Jump to: navigation, search
Line 4: Line 4:
 
#Ermentrout pmid=9744894
 
#Ermentrout pmid=9744894
 
#Fleidervish pmid=8735696
 
#Fleidervish pmid=8735696
 +
#Goldberg pmid=9882748
 
#Golding pmid=16002454
 
#Golding pmid=16002454
 
#Grunewald pmid=12456702
 
#Grunewald pmid=12456702
 +
#Gu pmid=16399696
 
#Hodgkin pmid=12991237
 
#Hodgkin pmid=12991237
 +
#Jiang pmid=15772240
 
#Jortner pmid=17301174
 
#Jortner pmid=17301174
 
#Kay pmid=16766212
 
#Kay pmid=16766212
Line 17: Line 20:
 
#Dayan isbn=0-262-54185-8
 
#Dayan isbn=0-262-54185-8
 
#Schafer pmid=7519255
 
#Schafer pmid=7519255
 +
#Su pmid=14534259
 
#Traub pmid=7110586
 
#Traub pmid=7110586
 
#Wang pmid=9497431
 
#Wang pmid=9497431
 
#Wustenberg pmid=15190098
 
#Wustenberg pmid=15190098
 
</biblio>
 
</biblio>

Revision as of 09:32, 24 August 2007

  1. Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD, Sejnowski TJ, and Laurent G. Model of transient oscillatory synchronization in the locust antennal lobe. Neuron. 2001 May;30(2):553-67. PubMed ID:11395014 | HubMed [Bazhenov]
  2. Benda J and Herz AV. A universal model for spike-frequency adaptation. Neural Comput. 2003 Nov;15(11):2523-64. DOI:10.1162/089976603322385063 | PubMed ID:14577853 | HubMed [Benda]
  3. Ermentrout B. Linearization of F-I curves by adaptation. Neural Comput. 1998 Oct 1;10(7):1721-9. PubMed ID:9744894 | HubMed [Ermentrout]
  4. Fleidervish IA, Friedman A, and Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol. 1996 May 15;493 ( Pt 1):83-97. PubMed ID:8735696 | HubMed [Fleidervish]
  5. Goldberg F, Grünewald B, Rosenboom H, and Menzel R. Nicotinic acetylcholine currents of cultured Kkenyon cells from the mushroom bodies of the honey bee Aapis mellifera. J Physiol. 1999 Feb 1;514 ( Pt 3):759-68. PubMed ID:9882748 | HubMed [Goldberg]
  6. Golding NL, Mickus TJ, Katz Y, Kath WL, and Spruston N. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites. J Physiol. 2005 Oct 1;568(Pt 1):69-82. DOI:10.1113/jphysiol.2005.086793 | PubMed ID:16002454 | HubMed [Golding]
  7. Grünewald B. Differential expression of voltage-sensitive K+ and Ca2+ currents in neurons of the honeybee olfactory pathway. J Exp Biol. 2003 Jan;206(Pt 1):117-29. PubMed ID:12456702 | HubMed [Grunewald]
  8. Gu H and O'Dowd DK. Cholinergic synaptic transmission in adult Drosophila Kenyon cells in situ. J Neurosci. 2006 Jan 4;26(1):265-72. DOI:10.1523/JNEUROSCI.4109-05.2006 | PubMed ID:16399696 | HubMed [Gu]
  9. HODGKIN AL and HUXLEY AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500-44. PubMed ID:12991237 | HubMed [Hodgkin]
  10. Jiang SA, Campusano JM, Su H, and O'Dowd DK. Drosophila mushroom body Kenyon cells generate spontaneous calcium transients mediated by PLTX-sensitive calcium channels. J Neurophysiol. 2005 Jul;94(1):491-500. DOI:10.1152/jn.00096.2005 | PubMed ID:15772240 | HubMed [Jiang]
  11. Jortner RA, Farivar SS, and Laurent G. A simple connectivity scheme for sparse coding in an olfactory system. J Neurosci. 2007 Feb 14;27(7):1659-69. DOI:10.1523/JNEUROSCI.4171-06.2007 | PubMed ID:17301174 | HubMed [Jortner]
  12. Kay LM and Stopfer M. Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol. 2006 Aug;17(4):433-42. DOI:10.1016/j.semcdb.2006.04.012 | PubMed ID:16766212 | HubMed [Kay]
  13. Laurent G and Naraghi M. Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci. 1994 May;14(5 Pt 2):2993-3004. PubMed ID:8182454 | HubMed [Laurent]
  14. Leitch B and Laurent G. GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system. J Comp Neurol. 1996 Sep 2;372(4):487-514. DOI:10.1002/(SICI)1096-9861(19960902)372:4<487::AID-CNE1>3.0.CO;2-0 | PubMed ID:8876449 | HubMed [Leitch]
  15. Laurent G and Naraghi M. Odorant-induced oscillations in the mushroom bodies of the locust. J Neurosci. 1994 May;14(5 Pt 2):2993-3004. PubMed ID:8182454 | HubMed [Naraghi]
  16. ISBN:0521843219 [Carnevale]
  17. Pelz C, Jander J, Rosenboom H, Hammer M, and Menzel R. IA in Kenyon cells of the mushroom body of honeybees resembles shaker currents: kinetics, modulation by K+, and simulation. J Neurophysiol. 1999 Apr;81(4):1749-59. DOI:10.1152/jn.1999.81.4.1749 | PubMed ID:10200210 | HubMed [Pelz]
  18. Perez-Orive J, Bazhenov M, and Laurent G. Intrinsic and circuit properties favor coincidence detection for decoding oscillatory input. J Neurosci. 2004 Jun 30;24(26):6037-47. DOI:10.1523/JNEUROSCI.1084-04.2004 | PubMed ID:15229251 | HubMed [Perez-Orive]
  19. ISBN:0-262-54185-8 [Dayan]
  20. Schäfer S, Rosenboom H, and Menzel R. Ionic currents of Kenyon cells from the mushroom body of the honeybee. J Neurosci. 1994 Aug;14(8):4600-12. PubMed ID:7519255 | HubMed [Schafer]
  21. Su H and O'Dowd DK. Fast synaptic currents in Drosophila mushroom body Kenyon cells are mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors and picrotoxin-sensitive GABA receptors. J Neurosci. 2003 Oct 8;23(27):9246-53. PubMed ID:14534259 | HubMed [Su]
  22. Traub RD. Simulation of intrinsic bursting in CA3 hippocampal neurons. Neuroscience. 1982 May;7(5):1233-42. PubMed ID:7110586 | HubMed [Traub]
  23. Wang XJ. Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J Neurophysiol. 1998 Mar;79(3):1549-66. DOI:10.1152/jn.1998.79.3.1549 | PubMed ID:9497431 | HubMed [Wang]
  24. Wüstenberg DG, Boytcheva M, Grünewald B, Byrne JH, Menzel R, and Baxter DA. Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee. J Neurophysiol. 2004 Oct;92(4):2589-603. DOI:10.1152/jn.01259.2003 | PubMed ID:15190098 | HubMed [Wustenberg]
All Medline abstracts: PubMed | HubMed