Talk:CH391L/S12/Synthetic Cooperation

From OpenWetWare
Jump to: navigation, search
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):I don't agree with this statement: "With natural, single populations, maintaining homeostasis is relatively simple, as members in the population typically do not out compete each other, nor do they exhaust their supply of resources." Members in a population do compete with each other and they certainly exhaust their supply of resources in any overnight culture. More explanation needed.
    • Jeremy R. McLain 16:54, 15 April 2012 (EDT):I see what you mean. That idea came from the Brenner paper, where she cites two papers that refer to 'oral' microbial communities.[1][2] Looking at the this statement in the context of natural oral consortiums, it makes a little more sense because they obtain their resources when we consume food. I agree that they do compete with each other, however since they reach a steady state, none of the communities have out competed the others. I'll rephrase the statement to put it into the correct context and add those citations to the wiki.
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):Too vague: What kinds of directed evolution, high-throughput screening, and gene-chip assay procedures will aid in design of consortia? For what purposes will these be used?
    • Jeremy R. McLain 17:31, 15 April 2012 (EDT):It is vague. The Brenner paper was outlining problems that need to be solved in order to better control the performance of consortium. They were pretty much just musing about what they would like to see in the future. So to put it more accurately, it's not necessarily "what kind" of techniques are used, just we need "better" techniques. The only way this is going to happen is with time and research.
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):What were the conclusions of the Wintermute study? Evaluate their work. The study found that 17% of the pair displayed synergistic growth, but that wasn't the point of the study. They wanted to characterize their results into a model that used "shadow prices" to represent the "cost" of releasing metabolites. This idea is apparently borrowed from linear programming models. I'll add another paragraph that goes into this idea a little bit.
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):Is SMIT the same as CoSMO? Any salient differences?
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):You have directly reproduced the figures AND captions from the Shou paper. The point of writing these topics is to evaluate and synthesize a topic, not verbatim reproduce what is already in a reference. I recommend only using very few selected figures (remember copyright discussion), and even then only portions of those figures where you are going to comment directly on what they were showing.
  • Jeffrey E. Barrick 13:04, 15 April 2012 (EDT):It's kind of surprising how few iGEM teams seem to have used consortia. I can't really find any others. Here's one for terraforming Mars, but they don't get as far as growing two different bacteria together.



  1. Marsh2006 pmid=12624191
  2. Kuramitsu2007 pmid=18063722