From OpenWetWare
Revision as of 12:13, 6 February 2013 by Shelly Peyton (talk | contribs) (Matrix Physicochemical Cues as Chemotherapeutic Protective Agents in Hepatocellular Carcinoma)

Web header.png

Home                                                                                      Internal   

Matrix Physicochemical Cues as Chemotherapeutic Protective Agents in Hepatocellular Carcinoma

FUNDING: Barry and Afsaneh Siadat Early Career
Thuy Nguyen
Thuy is building a highthroughput biomaterial system in which to quantify how cancer cells respond to drugs in the presence of physiologically relevent stiffness and adhesive protein cues.

Thuy wordle.jpg


Inflammatory Feedback Loops in Cardiovascular Disease

Will Herrick
Funding: ICE IGERT
We are investigating the ability of matrix state to trigger SMC motility and invasion via stiffness changes during atherosclerosis and the presence of infiltrating macrophages.

Will wordle.jpg

Stiffness Sensing as a Metastatic Indicator

Dannielle Ryman, in collaboration with Al Crosby in PSE
Funding: MRSEC Seed Award
We are working with Yuri Ebata and Yujie Liu from Al Crosby's lab in PSE to make novel substrates with unique presentation of stiffness arrays and mechanical length scales. We are visualizing how breast cancer cells of varying known metastatic capability sense and respond (namely, migration and mitosis) to these changes in stiffness.

DRyman Screenshot.png

Predicting Tissue Tropism in Metastasis

Lauren Barney and Elyse Hartnet, in Collaboration with Nick Reich in the School of Public Health
Lauren is creating both 2D and 3D models of tissues that are most often recipient of breast cancer metastasis. They are quantifying how breast cancer cells migrate and invade in these diverse environments, in the hope that we can identify physical mechanisms by which breast cancer spreads.

NSF PESO wordle.jpg
NSF PESO intro.png

Anomalous Diffusion Methods to Predict 3D Stem Cell Motility in Porous Scaffolds

Tyler Vlass, in Collaboration with Josh Cohen at MIT and Ryan Hayward in PSE
Tyler and Josh are both outstanding undergraduates that the Peyton lab is lucky to work with. Tyler is leading experimental efforts to quantify how adult stem cells migrate in response to physical properties of 2D and 3D scaffolds. Josh works with us from MIT and is developing new computational approaches to describe and predict stem cell migration in these scaffolds.

File:MSC Peyton wordle.tiff

3D scaffold.jpg