Pacemaker, by Chris Carr

From OpenWetWare
Revision as of 13:00, 17 February 2013 by Christopher W. Carr (talk | contribs) (New page: == Background == right|thumb|275px|Figure 1. Diagram of a nephron and the processes [1] The human kidney is an essential organ, playing vital roles in both the urin...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search


Figure 1. Diagram of a nephron and the processes [1]

The human kidney is an essential organ, playing vital roles in both the urinary and endocrine system. The kidney maintains the chemical and water balance of the body with the help of nephrons, which are the functioning units that remove waste from the blood. Nephrons accomplish this through filtration and both active and passive transport; each kidney has approximately 1 million nephrons. Figure 1 shows a nephron and the processes that occur [1][2][3].

It is important to note that the blood enters the nephron at the glomerulus, which filtrates solutes up to 60,000 Da. The glomerular filtration rate (GFR) for an average person is roughly 125 mL/min, or 180 liters/day. The resulting fluid and solutes then enter the renal tubes, where different types of transport occurs [1][2].

In the proximal tube (first part of the renal tube), water is reabsorbed back in the blood stream: around 178 liters/day. Other substances are also reabsorbed, such as sodium and glucose. Glucose is always fully recovered while sodium is regulated; depending on the salt concentration within the body, sodium is either reabsorbed or secreted [1].

The substances that were not filtered out in the glomerulus, like hydrogen and potassium ions, ammonia, and certain drugs, enter the peritubular capillaries. These components are then secreted into the distal tubule (second part of the renal tube). The toxins are then sent to the bladder with the ~1% of water that wasn't reabsorbed [1].

The kidney also has other important functions by sensing the composition of the blood and secreting substances that aid in bone metabolism, red blood cell production, and blood pressure regulation. When kidneys are no longer able to function as intended, renal failure occurs and can be classified as acute or chronic. Both can be treated with dialysis if there is not a donor organ available [2].