Difference between revisions of "IGEM:Cambridge/2008/Notebook/Magnetic Bacteria/Entry Base"

From OpenWetWare
Jump to: navigation, search
(Entry title)
(Entry title)
Line 7: Line 7:
==Entry title==
==Entry title==
The idea is to generate magnetic organelles in E.coli that resembles magnetosomes of magnetotactic bacteria. Magnetosomes are inner-membrane invaginations that contain a single-domain magnetic crystal, of magnetite (Fe3O4) or greigite (Fe3S4). It is thought that magnetosomes help magnetotactic bacteria to orient themselves in microaerobic conditions, and avoid oxygen-rich environments.
Most species of magnetotactic bacteria are notoriously hard to grow in lab conditions; this is why we think working with E.coli is a good idea. Our goal is it possible to isolate our modified cells by magnetic fields. The potential applications are in the field of bioremediation, where E.coli cells could be made to take up contaminants, and then isolated by magnetic fields. Also, a further development would be to synthesise free magnetosomes that can be conjugated to antibodies and used as a simple tag that can be monitored by MRI.
This is a multistep process. First, the cell is grown in iron-rich media (see below) to allow iron uptake. Then, invaginations of the inner membrane is induced by expression of the b subunit of the F1F0 ATP synthase. Iron uptake into the membrane folds is mediated by the product of the Magnetospirillum magnetotacticum gene magA, which functions as a proton/iron antiporter. Finally, biomineralisation is achieved by a small protein encoded in the genomic 'magnetosome island'.

Revision as of 06:59, 29 July 2008

Igem-logo-150px.png iGEM Project name 1 <html><img src="/images/9/94/Report.png" border="0" /></html> Main project page

Entry title