Free Sulfhydryl Determination

From OpenWetWare
Revision as of 11:00, 2 March 2006 by Smoore (talk | contribs) (Protocol)
Jump to: navigation, search


This is the protocol I used to determine the concentration of reduced cysteine in a purified protein. It takes advantage of the redox potential of the sulhydryl group and a coliometric reagent that turns yellow upon reaction with the sulhydryl (DTNB + SH ---> 2-nitro-5-thiobenzoic acid (yellow)). A standard curve is generated using a reactive sulfhydryl compound of known concentrations (cysteine, DTT, 2-ME, etc.) and then the amount of free cysteine determined for a solution of protein is compared to the known protein concentration. In doing so, one can determine the stochiometry of cysteine to cystine in a protein.


1 M Tris-Cl, pH 8.0

tris base to pH 8.0 with HCl

2 mM DTNB dissolved in 50 mM sodium acetate

Stock of known thiol compound (I use 100 mM DTT)

DTT has 2 reactive thiols per molecule, this will be corrected for later

Protein of Interest (not in a thiol-containing buffer!)

Usually several proteins samples are compared: a stock solution, a reduced and buffer exchanged sample, a reduced sample that was reacted with a thiol-blocking compound (like iodoacetate)and buffer exchanged. Make sure to remove free thiol or thiol-reactive compounds from the protein solution before attempting to measure free cysteine concentration.


Prepare a "Working Solution" by mixing:

  • 8.4 mLs Water
  • 1 mL 1M Tris-Cl pH 8.0
  • 0.5 mL DTNB solution

Make serial dilutions of DTT (or whatever control you are using)with the highest concentration about 5 mM (or 10 mM for single thiol compound).

Aliquot Working Solution into tubes (495 uL is usually fine).

Add 5 uL of the DTT solutions to each and mix.

Measure the absorbance of the solution at 412 nm (blank against a no DTT mixture). If you have trouble with reproducibility of the same sample, try placing the cuvette with the solution in the spec., then blanking, and without removing the cuvette, adding the thiol and measuring.