CH391L/S13/DIY SyntheticBiology

From OpenWetWare
Revision as of 12:53, 30 January 2013 by John Hanks (talk | contribs) (DIY Biology: Issues Summary)
Jump to: navigation, search


“Do-it-yourself biology” is a metaphor referring to the prospect of amateurs creating organisms in their kitchen or garage. Imagine a world where anybody with an average IQ has the ability to create novel organisms in their home garage without adhering to professional code or conduct, adhering to safety regulations, and lacking sufficient biosafety training. On one hand, the promise of DIY Biology movement opens up biology to potentially create the next Silicon Valley. They are Steve Jobs and Bill Gates of the mid-1970’s or the Mark Zuckerberg of early 2000’s. Imagine just before the PC or social media explosions. On the other hand, DIY biologist are tampering with living organisms and if they aren’t careful they could release virulent bugs that could lead to harm. Is there an economic miracle or a doomsday situation just around the corner? The enthusiasm for DIY Biology as a “movement” is relatively recent, beginning around 2005, and has been popularized by Make Magazine, published by O’Reilly Media which has traditionally focused on do-it-yourself projects involving computers, electronics, and robotics. The International Genetically Engineered Machine (iGEM) competition has contributed to the growth of the DIY biology movement by making standard components and kits available to a large community. To date, universities have focused on using the concepts of DIY biology for educating and teaching, scholarly publications have focused on the ethics and biosafety ramifications. While DIY biologist want to revise the notation that you require and advanced degree to make a significant contribution to biology, traditional scientist have legitimate concerns for safety, legal, and ethical issues.


  1. C.M.Kelty, Outlaw, hackers, Victorian amateurs: diagnosing public participation in the life sciences today, Jcom 09(01) (2010) C03
  2. C. Christensen, The Innovator's Dilemma: When New Technologies Cause Great Firms to Fail, Harvard Business Press, 1997
  3. H. Walinsky, DIY Biology, EMBO Rep, July 2009; v 10(7): 683–685.
  4. Ledford, H.,Life Hackers, Nature, Oct. 201, v 467: 651.
  5. Carlson. R., Biology is Technology, Harvard University Press, 2010

DIY Biology: Issues and Insights Summary

  1. What are the safety, ethical, and legal issues especially for designed microorganisms?
  2. DIY Biology has the potential to have an economic impact and be a source of innovation.
  3. For DIY Biology innovations is there an issue of legitimacy, or how does it become accepted?
  4. Do we need a new "construct" for how the public can participate in biological research and innovation?

What will it take for DIY Biology Adoption more Broadly?

  1. Tool chain standardization and abstraction – further abstraction of design tools (i.e. Biobricks)
  2. More reliability design elements – synthetic biology component outputs and actions are predictable like electronic components
  3. Low Cost Equipment & Processes – low-cost DIY Biology Instrumentation (PCR, centrifuges . . .) begins to make it’s way into research labs as being "good enough"
  4. Community & Curator – a company or university creates approved “deployment” targets (organism and hardware). Low cost 3D printing may provide a source for deployment microfluidic hardware
  5. IP protection and infrastructure investment
  6. Feedback – something beyond a ‘star’ rating, peer reviewed ratings
  7. Killer App – less regulated market create lower initial barrier for entry (home brewers are DIY Biology)