From OpenWetWare
Revision as of 17:52, 25 February 2012 by James L. Bachman (talk | contribs)
Jump to: navigation, search



The first step toward gene expression is the transcription of a DNA template into a complementary RNA strand. This process is done by RNA polymerase, which reads the DNA template and produces an antiparallel RNA copy. As in DNA replication, the complementary strand is produced 5'->3'If the DNA template encodes for a gene, this RNA transcript will be refined into mRNA, which is further translated into a functional protein, as well, the transcribed template may also go on to make ribosomal RNA (rRNA) or transfer RNA (tRNA). The entire process can be broken into three major steps: initiation, elongation, and termination.


Initiation of transcription occurs differently in eukaryotes and prokaryotes. In eukaryotes, the transcription initiation complex must be formed. This includes, the core promoter, transcription factors, RNA polymerase, and activators/repressors. In prokaryotes, RNA polymerase and sigma factors are needed.



Promoters that do not rely on input and depend only the level of free RNA polymerase holoenzyme are referred to as constitutive. Since the holoenzyme is needed, it can also be said that these rely on the level of sigma factors.


These promoters depend on the level of transcription factors that are not sigma factors. As the concentration of activator increase, the rate of transcription also increases. If an activator protein relies on the binding of an exogenous molecule to activate it, then the promoter may be referred to as inducible.


Negatively regulated promoters on the level of a repressor transcription factor. Increased levels of a repressor will lower the activity of these promoters. If a repressor that inactivates the promoter is always present and an exogenous molecule is added that binds the repressor and deactivates it, then promoter may be referred to as inducible.


Promoters in this category are either positively or negatively regulated by multiple transcription factors. These are most useful when a promoter that relies on multiple environmental factors to function is desired.

#$% Yeast Promoter

#$% Bacterial Promoter


The termination step of transcription varies between prokaryotes and eukaryotes. In prokaryotic organisms, termination involves formation of a hairpin loop which destabilizes the transcript in rho-independent termination. In rho-dependent termination, a protein Rho destabilizes the RNA-DNA complex and leads to termination of transcription.



In this type of termination, a protein factor called Rho destabilizes the DNA template-RNA transcript complex, causing the release of the RNA transcript. Rho-dependent terminators are not included in the iGEM registry because these terminators are not specified by sequence.


The terminators are composed sequences that lead to a hairpin loop rich in G-C base pairs followed by many bases of thymine. The formation of the RNA G-C rich stem loop causes a pause in the RNA Polymerase. This pause, followed by the transcription of the poly A tail into a run of U's causes a mechanical stress and the unwinding of the RNA-DNA complex, causing the dissociation of the RNA transcript from RNA polymerase.

#$% Bacterial Terminator


In yeast, termination is different for each RNA polymerase (I-III). The process involves the polyadenylation at the 3' end of the RNA transcript. A set of proteins cleave off the RNA transcript and then synthesize the poly A tail, independent of the DNA template. This step is important toward refining the RNA into mRNA that will translated.

#$% Yeast Terminator