Biomod/2013/Harvard/introduction: Difference between revisions

From OpenWetWare
Jump to navigationJump to search
No edit summary
Line 16: Line 16:


Proteins often function as sensors and monitors in nature, and are therefore often used as platforms for engineered biosensors. Many proteins show drastic alterations in conformation or function in response to the presence of another molecule, in effect acting as a sensor. These natural responses can be harnesses to create a man-made sensor that is biologically emulative. Standard protein mechanics, such as a change in formation upon ligand binding, can be modified to occur in response to novel events or conditions.
Proteins often function as sensors and monitors in nature, and are therefore often used as platforms for engineered biosensors. Many proteins show drastic alterations in conformation or function in response to the presence of another molecule, in effect acting as a sensor. These natural responses can be harnesses to create a man-made sensor that is biologically emulative. Standard protein mechanics, such as a change in formation upon ligand binding, can be modified to occur in response to novel events or conditions.
===

Revision as of 10:36, 11 October 2013

<html>

<head>

<link href='http://fonts.googleapis.com/css?family=Open+Sans' rel='stylesheet' type='text/css'>

</head>



<style>

body {

 font-family: 'Open Sans', sans-serif;
 overflow-y: scroll;

}

.container {

 background-color: #ffffff;
 margin-top:0px

} .OWWNBcpCurrentDateFilled { display: none; }

h1 {

 font-size: 36px;
 line-height: 36px;
 padding-top: 5px;
 border-bottom-width: 0;

}

h3 {

 font-size: 18px;

}


h5 {

 font-family: 'Open Sans', sans-serif;
 font-size: 11px;
 font-style: normal;
 text-align: center;
 margin:0px;
 padding:0px;

}

  1. column-content

{

 /* Uncomment to Dewikify 
 width: 0px; 
 float: left; */
 margin: 0 0 0 0;
 padding: 0;

} .firstHeading {

 display:none;
 width:0px;

}

  1. column-one

{

 display:none; 
 width:0px;
 padding-top: 35px;
 background-color: #ffffff;

}

  1. globalWrapper

{

 width: 900px;
 background-color: #ffffff;
 margin-left: auto;
 margin-right: auto

}

  1. content

{

 margin-left: 0px;
 margin-top: 0px;
 padding-top: 0px;
 align: center;
 /*padding: 12px 12px 12px 12px;
  width: 30%;
 background-color: #ffffff; border: 0; */
 

}

  1. bodyContent

{

 width: 850px;
 align: center;
 background-color: #fffffff;

}

  1. column-content

{

 width: 900px;
 background-color: #ffffff;

}

  1. footer

{

 position: center;
 width: 900px;

} @media screen {

   body { background: #000000 0 0 no-repeat;  /* changed default background */ }

}

  1. menu

{

 align: left;
 width: 10em;
 padding: 0px 10px 10px 10px;
 background-color: #FFFFFF;
 float: left;

}

  1. pagecontent

{

 width: 620px;
 min-height: 400px;
 float: left;
 margin-left: 0px;

}

.group:after {

 content: "";
 display: table;
 clear: both;

}

.editsection {

 /*display: none*/  

}




a:link {color:#FF6060;} a:active {color:#B24343; } a:hover {color:#B24343; text-decoration: none} a:visited {color:#FF6060;} /* visited link */

/*Expanding list*/

  1. exp { list-style: none; }
  1. exp li {
 height: 1.8em; 
 border-top: 1px solid #dedede;
 margin: 0 0 0 0;
 padding-top: .2em

}

  1. exp li:hover { background-color: #F8F8F8}
  2. exp li a:hover { display: block }

</style> </html>

Introduction

easy applications
easy applications

The importance of being able to detect of bioagents pervades our daily lives as it plays an essential role in biotechnology, medicine, agriculture, and even in military. For example, glucose monitoring for diabetes, fighting bioterrorism, screening for food toxins, and diagnosing a disease all require an efficient method of detecting bioagents.



Biosensors and Allosteric Switches

One approach for detecting bioagents is the use of biosensors. Biosensors are biologically derived chemical sensing device that recognizes a presence of a certain molecule and outputs a measurable signal in response. It is composed of two parts: the bio-element that recognizes a specific analyte, or bioagent, and the transducer that converts the recognition into a readily detectable output signal.

Fig. 1: A Biosensor Enzyme (Adapted from Mohanty et al, 2006)

Proteins often function as sensors and monitors in nature, and are therefore often used as platforms for engineered biosensors. Many proteins show drastic alterations in conformation or function in response to the presence of another molecule, in effect acting as a sensor. These natural responses can be harnesses to create a man-made sensor that is biologically emulative. Standard protein mechanics, such as a change in formation upon ligand binding, can be modified to occur in response to novel events or conditions.